메뉴 건너뛰기




Volumn 9, Issue 1, 2008, Pages

Refinements and sharpenings of some double inequalities for bounding the gamma function

Author keywords

Generalization; Inequality; Ke li vasi alzer's double inequalities; Refinement; Sharpening

Indexed keywords


EID: 43449112661     PISSN: None     EISSN: 14435756     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (9)
  • 1
    • 22844454193 scopus 로고    scopus 로고
    • Inequalities for the gamma function
    • H. ALZER, Inequalities for the gamma function, Proc. Amer. Math. Soc., 128(1) (1999), 141-147.
    • (1999) Proc. Amer. Math. Soc , vol.128 , Issue.1 , pp. 141-147
    • ALZER, H.1
  • 2
    • 84968470274 scopus 로고
    • Some gamma function inequalities
    • H. ALZER, Some gamma function inequalities, Math. Comp., 60 (1993) 337-346.
    • (1993) Math. Comp , vol.60 , pp. 337-346
    • ALZER, H.1
  • 4
    • 21944437101 scopus 로고    scopus 로고
    • A monotonicity property of the gamma function
    • G.D. ANDERSON AND S.-L. QIU, A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355-3362.
    • (1997) Proc. Amer. Math. Soc , vol.125 , pp. 3355-3362
    • ANDERSON, G.D.1    QIU, S.-L.2
  • 5
    • 33646338597 scopus 로고    scopus 로고
    • Logarithmically completely monotonie functions relating to the gamma function
    • C.-P. CHEN AND F. QI, Logarithmically completely monotonie functions relating to the gamma function, J. Math. Anal. Appl., 321 (2006), 405-411.
    • (2006) J. Math. Anal. Appl , vol.321 , pp. 405-411
    • CHEN, C.-P.1    QI, F.2
  • 6
    • 35648949504 scopus 로고    scopus 로고
    • Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic
    • S. GUO, F. QI, AND H.M. SRIVASTAVA, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct., 18(11) (2007), 819-826.
    • (2007) Integral Transforms Spec. Funct , vol.18 , Issue.11 , pp. 819-826
    • GUO, S.1    QI, F.2    SRIVASTAVA, H.M.3
  • 7
    • 43449083871 scopus 로고    scopus 로고
    • J. D. KEČLIĆ AND P. M. VASIĆ, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N. S.), 11 (1971), 107-114.
    • J. D. KEČLIĆ AND P. M. VASIĆ, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N. S.), 11 (1971), 107-114.
  • 8
    • 34047159558 scopus 로고    scopus 로고
    • X. LI AND CH.-P. CHEN, Inequalities for the gamma function, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 28. [ONLINE: http://jipam.vu.edu.au/article.php?sid=842].
    • X. LI AND CH.-P. CHEN, Inequalities for the gamma function, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 28. [ONLINE: http://jipam.vu.edu.au/article.php?sid=842].
  • 9
    • 43449091717 scopus 로고    scopus 로고
    • F. QI, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5(3) (2003), 63-90. RGMIA Res. Rep. Coll., 5(1) (2002), Art. 5, 57-80. [ONLINE: http://rgmia.vu.edu.au/v5n1.html].
    • F. QI, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5(3) (2003), 63-90. RGMIA Res. Rep. Coll., 5(1) (2002), Art. 5, 57-80. [ONLINE: http://rgmia.vu.edu.au/v5n1.html].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.