-
1
-
-
22844454193
-
Inequalities for the gamma function
-
H. ALZER, Inequalities for the gamma function, Proc. Amer. Math. Soc., 128(1) (1999), 141-147.
-
(1999)
Proc. Amer. Math. Soc
, vol.128
, Issue.1
, pp. 141-147
-
-
ALZER, H.1
-
2
-
-
84968470274
-
Some gamma function inequalities
-
H. ALZER, Some gamma function inequalities, Math. Comp., 60 (1993) 337-346.
-
(1993)
Math. Comp
, vol.60
, pp. 337-346
-
-
ALZER, H.1
-
3
-
-
0000128713
-
Inequalities for zero-balanced hypergeometric functions
-
G.D. ANDERSON, R.W. BARNARD, K.C. RICHARDS, M.K. VAMANAMURTHY AND M. VUORINEN, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347(5) (1995), 1713-1723.
-
(1995)
Trans. Amer. Math. Soc
, vol.347
, Issue.5
, pp. 1713-1723
-
-
ANDERSON, G.D.1
BARNARD, R.W.2
RICHARDS, K.C.3
VAMANAMURTHY, M.K.4
VUORINEN, M.5
-
4
-
-
21944437101
-
A monotonicity property of the gamma function
-
G.D. ANDERSON AND S.-L. QIU, A monotonicity property of the gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355-3362.
-
(1997)
Proc. Amer. Math. Soc
, vol.125
, pp. 3355-3362
-
-
ANDERSON, G.D.1
QIU, S.-L.2
-
5
-
-
33646338597
-
Logarithmically completely monotonie functions relating to the gamma function
-
C.-P. CHEN AND F. QI, Logarithmically completely monotonie functions relating to the gamma function, J. Math. Anal. Appl., 321 (2006), 405-411.
-
(2006)
J. Math. Anal. Appl
, vol.321
, pp. 405-411
-
-
CHEN, C.-P.1
QI, F.2
-
6
-
-
35648949504
-
Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic
-
S. GUO, F. QI, AND H.M. SRIVASTAVA, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct., 18(11) (2007), 819-826.
-
(2007)
Integral Transforms Spec. Funct
, vol.18
, Issue.11
, pp. 819-826
-
-
GUO, S.1
QI, F.2
SRIVASTAVA, H.M.3
-
7
-
-
43449083871
-
-
J. D. KEČLIĆ AND P. M. VASIĆ, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N. S.), 11 (1971), 107-114.
-
J. D. KEČLIĆ AND P. M. VASIĆ, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N. S.), 11 (1971), 107-114.
-
-
-
-
8
-
-
34047159558
-
-
X. LI AND CH.-P. CHEN, Inequalities for the gamma function, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 28. [ONLINE: http://jipam.vu.edu.au/article.php?sid=842].
-
X. LI AND CH.-P. CHEN, Inequalities for the gamma function, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 28. [ONLINE: http://jipam.vu.edu.au/article.php?sid=842].
-
-
-
-
9
-
-
43449091717
-
-
F. QI, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5(3) (2003), 63-90. RGMIA Res. Rep. Coll., 5(1) (2002), Art. 5, 57-80. [ONLINE: http://rgmia.vu.edu.au/v5n1.html].
-
F. QI, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5(3) (2003), 63-90. RGMIA Res. Rep. Coll., 5(1) (2002), Art. 5, 57-80. [ONLINE: http://rgmia.vu.edu.au/v5n1.html].
-
-
-
|