-
1
-
-
0035845995
-
Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams
-
1
-
Banerjee J.R. (2001). Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. J. Sound Vib. 247(1): 97-115
-
(2001)
J. Sound Vib.
, vol.247
, pp. 97-115
-
-
Banerjee, J.R.1
-
2
-
-
0022414669
-
Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams
-
Banerjee J.R. and Williams F.W. (1985). Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams. Int. J. Numer. Methods Eng. 21: 2289-2302
-
(1985)
Int. J. Numer. Methods Eng.
, vol.21
, pp. 2289-2302
-
-
Banerjee, J.R.1
Williams, F.W.2
-
3
-
-
0042659293
-
A finite beam element for vibration analysis of rotating tapered Timoshenko beams
-
Bazoune A. and Khulief Y.A. (1992). A finite beam element for vibration analysis of rotating tapered Timoshenko beams. J. Sound Vib. 156: 141-164
-
(1992)
J. Sound Vib.
, vol.156
, pp. 141-164
-
-
Bazoune, A.1
Khulief, Y.A.2
-
4
-
-
85069377216
-
Transverse vibrations of cantilever beam having unequal breadth and depth tapers
-
Downs B. (1977). Transverse vibrations of cantilever beam having unequal breadth and depth tapers. ASME J. Appl. Mech. 44: 737-742
-
(1977)
ASME J. Appl. Mech.
, vol.44
, pp. 737-742
-
-
Downs, B.1
-
6
-
-
0026154624
-
A note on vibrating tapered beams
-
Grossi R.O. and Bhat R.B. (1991). A note on vibrating tapered beams. J. Sound Vib. 147: 174-178
-
(1991)
J. Sound Vib.
, vol.147
, pp. 174-178
-
-
Grossi, R.O.1
Bhat, R.B.2
-
7
-
-
0003198104
-
Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades
-
Hodges, D.H., Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818 (1974)
-
(1974)
NASA TN
, vol.D-7818
-
-
Hodges, D.H.1
Dowell, E.H.2
-
8
-
-
33744900388
-
Free vibration analysis of rotating Timoshenko beams by differential transform method
-
3
-
Kaya M.O. (2006). Free vibration analysis of rotating Timoshenko beams by differential transform method. Aircr. Eng. Aerosp. Tech. 78(3): 194-203
-
(2006)
Aircr. Eng. Aerosp. Tech.
, vol.78
, pp. 194-203
-
-
Kaya, M.O.1
-
9
-
-
0027110293
-
Frequencies of rotating tapered Timoshenko beams with different boundary conditions
-
Khulief Y.A. and Bazoune A. (1992). Frequencies of rotating tapered Timoshenko beams with different boundary conditions. Comput. Struct. 42: 781-795
-
(1992)
Comput. Struct.
, vol.42
, pp. 781-795
-
-
Khulief, Y.A.1
Bazoune, A.2
-
10
-
-
0024281501
-
On the analysis of laterally vibrating slender beams subject to various complicating effects
-
Kim C.S. and Dickinson S.M. (1988). On the analysis of laterally vibrating slender beams subject to various complicating effects. J. Sound Vib. 122: 441-455
-
(1988)
J. Sound Vib.
, vol.122
, pp. 441-455
-
-
Kim, C.S.1
Dickinson, S.M.2
-
11
-
-
0016338483
-
Transverse vibrations of non-uniform beam
-
Klein L. (1974). Transverse vibrations of non-uniform beam. J. Sound Vib. 37: 491-505
-
(1974)
J. Sound Vib.
, vol.37
, pp. 491-505
-
-
Klein, L.1
-
12
-
-
0021389813
-
Vibration frequencies of tapered bars with end mass
-
Lau J.H. (1984). Vibration frequencies of tapered bars with end mass. ASME J. Appl. Mech. 51: 179-181
-
(1984)
ASME J. Appl. Mech.
, vol.51
, pp. 179-181
-
-
Lau, J.H.1
-
13
-
-
0001345738
-
Exact solution for the analysis of general elastically restrained non-uniform beams
-
Lee S.Y. and Kuo Y.H. (1992). Exact solution for the analysis of general elastically restrained non-uniform beams. ASME J. Appl. Mech. 59: 205-212
-
(1992)
ASME J. Appl. Mech.
, vol.59
, pp. 205-212
-
-
Lee, S.Y.1
Kuo, Y.H.2
-
14
-
-
0028693961
-
Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root
-
Lee S.Y. and Lin S.M. (1994). Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root. J. Appl. Mech. 61: 949-955
-
(1994)
J. Appl. Mech.
, vol.61
, pp. 949-955
-
-
Lee, S.Y.1
Lin, S.M.2
-
15
-
-
0003093345
-
Analysis of non-uniform beam vibration
-
Lee S.Y., Ke H.Y. and Kuo Y.H. (1990). Analysis of non-uniform beam vibration. J. Sound Vib. 142: 15-29
-
(1990)
J. Sound Vib.
, vol.142
, pp. 15-29
-
-
Lee, S.Y.1
Ke, H.Y.2
Kuo, Y.H.3
-
16
-
-
0028765154
-
Vibration in the two principal planes of a non-uniform beam of rectangular cross-section, one side of which varies as the square root of the axial co-ordinate
-
Naguleswaran S. (1994). Vibration in the two principal planes of a non-uniform beam of rectangular cross-section, one side of which varies as the square root of the axial co-ordinate. J. Sound Vib. 172: 305-319
-
(1994)
J. Sound Vib.
, vol.172
, pp. 305-319
-
-
Naguleswaran, S.1
-
17
-
-
33845617693
-
Flexural vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method
-
6
-
Ozdemir Ozgumus O. and Kaya M.O. (2006). Flexural vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method. Meccanica 41(6): 661-670
-
(2006)
Meccanica
, vol.41
, pp. 661-670
-
-
Ozdemir Ozgumus, O.1
Kaya, M.O.2
-
18
-
-
27344446844
-
Flapwise bending vibration analysis of a rotating tapered cantilevered Bernoulli-Euler beam by differential transform method
-
Özdemir Ö. and Kaya M.O. (2006). Flapwise bending vibration analysis of a rotating tapered cantilevered Bernoulli-Euler beam by differential transform method. J. Sound Vib. 289: 413-420
-
(2006)
J. Sound Vib.
, vol.289
, pp. 413-420
-
-
Özdemir, Ö.1
Kaya, M.O.2
-
19
-
-
0023363015
-
Bending vibration of a class of rotating beams with hypergeometric solutions
-
Storti D. and Aboelnaga Y. (1987). Bending vibration of a class of rotating beams with hypergeometric solutions. ASME J. Appl. Mech. 54: 311-314
-
(1987)
ASME J. Appl. Mech.
, vol.54
, pp. 311-314
-
-
Storti, D.1
Aboelnaga, Y.2
-
20
-
-
0017790497
-
Vibrations of rotating, pretwisted and tapered blades
-
Swaminathan M. and Rao J.S. (1977). Vibrations of rotating, pretwisted and tapered blades. Mech. Mach. Theory 12: 331-337
-
(1977)
Mech. Mach. Theory
, vol.12
, pp. 331-337
-
-
Swaminathan, M.1
Rao, J.S.2
-
21
-
-
0018784532
-
Higher order tapered beam finite elements for vibration analysis
-
To C.W.S. (1979). Higher order tapered beam finite elements for vibration analysis. J. Sound Vib. 63: 33-50
-
(1979)
J. Sound Vib.
, vol.63
, pp. 33-50
-
-
To, C.W.S.1
-
22
-
-
0022421014
-
Flexural vibration of axially loaded beams with linear or parabolic taper
-
Williams F.W. and Banerjee J.R. (1985). Flexural vibration of axially loaded beams with linear or parabolic taper. J. Sound Vib. 99: 121-138
-
(1985)
J. Sound Vib.
, vol.99
, pp. 121-138
-
-
Williams, F.W.1
Banerjee, J.R.2
|