메뉴 건너뛰기




Volumn 313, Issue 1, 2004, Pages 37-71

Diffraction in the semiclassical approximation to Feynman's path integral representation of the Green function

Author keywords

Geometric theory of diffraction; Semiclassical approximation

Indexed keywords


EID: 4344641710     PISSN: 00034916     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aop.2004.06.003     Document Type: Article
Times cited : (4)

References (36)
  • 2
    • 4344561067 scopus 로고
    • A wealth of material on the geometrical approach to diffraction is
    • Lewis unpublished book manuscript in 2 volumes (Courant Institute, New York University)
    • A wealth of material on the geometrical approach to diffraction is in J.B. Keller and R.M. Lewis, Asymptotic Theory of Wave Propagation and Diffraction, unpublished book manuscript in 2 volumes (Courant Institute, New York University, 1970)
    • (1970) Asymptotic Theory of Wave Propagation and Diffraction
    • Keller, J.B.1    Lewis, R.M.2
  • 3
    • 4344683114 scopus 로고
    • Early applications of the geometrical theory of diffraction
    • Keller J.B. Early applications of the geometrical theory of diffraction are in Keller J.B. J. Appl. Phys. 30 1952 1452
    • (1952) J. Appl. Phys. , vol.30 , pp. 1452
    • Keller, J.B.1
  • 4
    • 84980082876 scopus 로고
    • Early applications of the geometrical theory of diffraction
    • Levy B.R. Keller J. Early applications of the geometrical theory of diffraction Commun. Pure Appl. Math. 12 1959 159
    • (1959) Commun. Pure Appl. Math. , vol.12 , pp. 159
    • Levy, B.R.1    Keller, J.2
  • 5
    • 4344677090 scopus 로고
    • Early applications of the geometrical theory of diffraction
    • Magiros D. Keller J.B. Early applications of the geometrical theory of diffraction Commun. Pure Appl. Math. 14 1961 457
    • (1961) Commun. Pure Appl. Math. , vol.14 , pp. 457
    • Magiros, D.1    Keller, J.B.2
  • 23
    • 0003599947 scopus 로고    scopus 로고
    • For the literature on caustic surfaces see, for example second ed. Berlin: Springer
    • For the literature on caustic surfaces see, for example Kravtsov Yu.A. Orlov Yu.I. Caustics, Catastrophes and Wave Fields second ed. 1999 Springer Berlin
    • (1999) Caustics, Catastrophes and Wave Fields
    • Kravtsov, Y.A.1    Orlov, Y.I.2
  • 25
    • 0040591512 scopus 로고    scopus 로고
    • Functional Integration, Basics and Applications
    • C. DeWitt-Morette, P. Cartier, & A. Folacci (Eds.), New York: Plenum
    • DeWitt-Morette C. Cartier P. Functional Integration, Basics and Applications, In: DeWitt-Morette C. Cartier P. Folacci A. (Eds.). Nato ASI Series B vol. 361 1997 97 Plenum New York
    • (1997) Nato ASI Series B , vol.361 , pp. 97
    • DeWitt-Morette, C.1    Cartier, P.2
  • 26
    • 4344577820 scopus 로고    scopus 로고
    • z/v in this case
    • z/v in this case
  • 28
    • 4344690523 scopus 로고    scopus 로고
    • Ref. 8, Section 2.4 and Ref. 13 , Chapter 8
    • Ref. 8, Section 2.4 and Ref. 13 , Chapter 8
  • 30
    • 4344632727 scopus 로고    scopus 로고
    • The whole semiclassical approximation is only of pedagogical value in the case of a sphere, since the exact spectral representation of the Green function of a massless particle excluded from a spherical region is known
    • The whole semiclassical approximation is only of pedagogical value in the case of a sphere, since the exact spectral representation of the Green function of a massless particle excluded from a spherical region is known
  • 31
    • 4344602698 scopus 로고    scopus 로고
    • A bounce here is analogous to an instanton solution in Quantum Field Theory in the sense that it too is a time-dependent and topologically stable solution of the classical equation of motion
    • A bounce here is analogous to an instanton solution in Quantum Field Theory in the sense that it too is a time-dependent and topologically stable solution of the classical equation of motion
  • 32
    • 4344684700 scopus 로고    scopus 로고
    • See Ref. 8 Section 12.5
    • See Ref. 8 Section 12.5
  • 33
    • 4344598789 scopus 로고    scopus 로고
    • See Ref. 11 Section 12.5
    • See Ref. 11 Section 2.2
  • 36
    • 4344677088 scopus 로고    scopus 로고
    • Random walk approach to wave propagation in wedges and cones
    • University of California preprint November 12
    • B.V. Budaev, D.B. Bogy, Random walk approach to wave propagation in wedges and cones, University of California preprint November 12, 2002
    • (2002)
    • Budaev, B.V.1    Bogy, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.