-
1
-
-
0032156828
-
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
-
S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. Assoc. Comput. Mach., 45:753-782, 1998.
-
(1998)
J. Assoc. Comput. Mach.
, vol.45
, pp. 753-782
-
-
Arora, S.1
-
2
-
-
4544261402
-
Approximation schemes for NP-hard geometric optimization problems: A survey
-
S. Arora. Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Programming, 97:27-42, 2003.
-
(2003)
Math. Programming
, vol.97
, pp. 27-42
-
-
Arora, S.1
-
3
-
-
35248826365
-
Approximation schemes for degree-restricted MST and red-blue separation problem
-
Lecture Notes in Computer Science, Springer-Verlag, Berlin
-
S. Arora and K. C. Chang. Approximation schemes for degree-restricted MST and red-blue separation problem. In Proc. 13th Internat. Colloq. Automata, Languages, and Programming, Lecture Notes in Computer Science, vol. 2719, Springer-Verlag, Berlin, pages 176-188, 2003.
-
(2003)
Proc. 13th Internat. Colloq. Automata, Languages, and Programming
, vol.2719
, pp. 176-188
-
-
Arora, S.1
Chang, K.C.2
-
4
-
-
0005369097
-
Approximation algorithms for geometric problems
-
D. S. Hochbaum (ed.), PWS, Boston, MA
-
M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems, PWS, Boston, MA, pages 296-345, 1997.
-
(1997)
Approximation Algorithms for NP-Hard Problems
, pp. 296-345
-
-
Bern, M.1
Eppstein, D.2
-
5
-
-
0003522094
-
Worst-case analysis of a new heuristic for the traveling salesman problem
-
Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA
-
N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Tech. Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA, 1975.
-
(1975)
Tech. Report
, vol.388
-
-
Christofides, N.1
-
6
-
-
0004116989
-
-
McGraw-Hill, New York
-
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (2nd edn.). McGraw-Hill, New York, 2001.
-
(2001)
Introduction to Algorithms (2nd Edn.)
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
Stein, C.4
-
7
-
-
52449144884
-
A proof of the Gilbert-Pollak conjecture on the Steiner ratio
-
D.-Z. Du and F. K. Hwang. A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica, 7:121-136, 1992.
-
(1992)
Algorithmica
, vol.7
, pp. 121-136
-
-
Du, D.-Z.1
Hwang, F.K.2
-
8
-
-
0000786253
-
Spanning trees and spanners
-
J.-R. Sack and J. Urrutia (eds.), Elsevier North-Holland, Amsterdam
-
D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia (eds.), Handbook of Computational Geometry, Elsevier North-Holland, Amsterdam, pages 425-461, 2000.
-
(2000)
Handbook of Computational Geometry
, pp. 425-461
-
-
Eppstein, D.1
-
9
-
-
0038192551
-
A network-flow technique for finding low-weight bounded-degree trees
-
S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young. A network-flow technique for finding low-weight bounded-degree trees. J. Algorithms, 24:310-324, 1997.
-
(1997)
J. Algorithms
, vol.24
, pp. 310-324
-
-
Fekete, S.P.1
Khuller, S.2
Klemmstein, M.3
Raghavachari, B.4
Young, N.5
-
10
-
-
0034381182
-
On minimum stars and maximum matchings
-
S. P. Fekete and H. Meijer. On minimum stars and maximum matchings. Discrete Comput. Geom., 23:389-407, 2000.
-
(2000)
Discrete Comput. Geom.
, vol.23
, pp. 389-407
-
-
Fekete, S.P.1
Meijer, H.2
-
12
-
-
0033724233
-
A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees
-
J. Könemann and R. Ravi. A matter of degree: improved approximation algorithms for degree-bounded minimum spanning trees. In Proc. 32nd ACM Sympos. Theory of Computing, pages 537-546, 2000.
-
(2000)
Proc. 32nd ACM Sympos. Theory of Computing
, pp. 537-546
-
-
Könemann, J.1
Ravi, R.2
-
14
-
-
0032667193
-
Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems
-
J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28:1298-1309, 1999.
-
(1999)
SIAM J. Comput.
, vol.28
, pp. 1298-1309
-
-
Mitchell, J.S.B.1
-
15
-
-
21144470704
-
Transitions in geometric minimum spanning trees
-
C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete Comput. Geom., 8:265-293, 1992.
-
(1992)
Discrete Comput. Geom.
, vol.8
, pp. 265-293
-
-
Monma, C.1
Suri, S.2
-
16
-
-
0037854822
-
On two geometric problems related to the traveling salesman problem
-
C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the traveling salesman problem. J. Algorithms, 5:231-246, 1984.
-
(1984)
J. Algorithms
, vol.5
, pp. 231-246
-
-
Papadimitriou, C.H.1
Vazirani, U.V.2
-
17
-
-
0038535671
-
Algorithms for finding low-degree structures
-
D. S. Hochbaum (ed.), PWS, Boston, MA
-
B. Raghavachari. Algorithms for finding low-degree structures. In D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems, PWS, Boston, MA, pages 266-295, 1997.
-
(1997)
Approximation Algorithms for NP-hard Problems
, pp. 266-295
-
-
Raghavachari, B.1
-
18
-
-
0037708035
-
Approximation algorithms for degree-constrained minimum-cost network-design problems
-
R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Approximation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica, 31:58-78, 2001.
-
(2001)
Algorithmica
, vol.31
, pp. 58-78
-
-
Ravi, R.1
Marathe, M.V.2
Ravi, S.S.3
Rosenkrantz, D.J.4
Hunt III, H.B.5
-
20
-
-
0001235540
-
An analysis of several heuristics for the traveling salesman problem
-
D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput., 6:563-581, 1977.
-
(1977)
SIAM J. Comput.
, vol.6
, pp. 563-581
-
-
Rosenkrantz, D.J.1
Stearns, R.E.2
Lewis, P.M.3
|