메뉴 건너뛰기




Volumn 67, Issue 1-2, 2004, Pages 55-66

Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid

Author keywords

Mimetic finite difference method; Support operator; Triangular grid

Indexed keywords

DIFFERENTIAL EQUATIONS; LINEAR SYSTEMS; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; OPTIMIZATION; PARAMETER ESTIMATION; POLYNOMIALS; THEOREM PROVING;

EID: 4344619323     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matcom.2004.05.008     Document Type: Conference Paper
Times cited : (17)

References (11)
  • 1
    • 0031071242 scopus 로고    scopus 로고
    • Natural discretizations for the divergence, gradient, and curl on logically rectangular grids
    • Hyman J.M., Shashkov M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Int. J. Comput. Math. Appl. 33(4):1997;81-104.
    • (1997) Int. J. Comput. Math. Appl. , vol.33 , Issue.4 , pp. 81-104
    • Hyman, J.M.1    Shashkov, M.2
  • 2
    • 0031333803 scopus 로고    scopus 로고
    • The adjoint operators or the natural discretizations for the divergence, gradient, and curl on logically rectangular grids
    • Hyman J.M., Shashkov M., The adjoint operators or the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Numer. Math. 25:1997;413-442.
    • (1997) IMACS J. Appl. Numer. Math. , vol.25 , pp. 413-442
    • Hyman, J.M.1    Shashkov, M.2
  • 3
    • 4344662942 scopus 로고    scopus 로고
    • Support operator method for Laplace equation on unstructured triangular grid
    • Ganzha V., Liska R., Shashkov M., Zenger C., Support operator method for Laplace equation on unstructured triangular grid. Selcuk J. Appl. Math. 3(1):2002;21-48.
    • (2002) Selcuk J. Appl. Math. , vol.3 , Issue.1 , pp. 21-48
    • Ganzha, V.1    Liska, R.2    Shashkov, M.3    Zenger, C.4
  • 4
    • 0035708126 scopus 로고    scopus 로고
    • Convergence of mimetic finite difference discretizations of the diffusion equation
    • Berndt M., Lipnikov K., Moulton J.D., Shashkov M., Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math. 9(4):2001;253-316.
    • (2001) East-west J. Numer. Math. , vol.9 , Issue.4 , pp. 253-316
    • Berndt, M.1    Lipnikov, K.2    Moulton, J.D.3    Shashkov, M.4
  • 5
    • 0035577026 scopus 로고    scopus 로고
    • The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods
    • Hyman J., Shashkov M., Steinberg S., The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods. Comput. Math. Appl. 42:2001;1527-1547.
    • (2001) Comput. Math. Appl. , vol.42 , pp. 1527-1547
    • Hyman, J.1    Shashkov, M.2    Steinberg, S.3
  • 7
    • 80052985571 scopus 로고
    • Partial cylindrical algebraic decomposition for quantifier elimination
    • Collins G.E., Hong H., Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3):1991;299-328.
    • (1991) J. Symb. Comput. , vol.12 , Issue.3 , pp. 299-328
    • Collins, G.E.1    Hong, H.2
  • 8
    • 0003685270 scopus 로고    scopus 로고
    • REDUCE user's manual, version 3.7
    • RAND, Santa Monica
    • A.C. Hearn, REDUCE User's Manual, version 3.7, Tech. Rep., RAND, Santa Monica, 1999.
    • (1999) Tech. Rep.
    • Hearn, A.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.