메뉴 건너뛰기




Volumn 46, Issue 2, 2004, Pages 183-201

A stabilized finite elements method for the Stokes problem based on polynomial pressure projections

Author keywords

Equal order interpolation; Inf sup Condition; Stabilized mixed methods; Stokes equations

Indexed keywords

POLYNOMIAL PRESSURE PROJECTIONS; PRESSURE ELEMENTS; STOKES PROBLEMS;

EID: 4344609992     PISSN: 02712091     EISSN: None     Source Type: Journal    
DOI: 10.1002/fld.752     Document Type: Article
Times cited : (298)

References (25)
  • 2
    • 0016093926 scopus 로고
    • On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Model
    • Brezzi F. On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Model. Revue Français D' Autimatique Informatique 1974; 21:129-151.
    • (1974) Revue Français D' Autimatique Informatique , vol.21 , pp. 129-151
    • Brezzi, F.1
  • 5
    • 0022810283 scopus 로고
    • A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations
    • Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering 1986; 59:85-99.
    • (1986) Computer Methods in Applied Mechanics and Engineering , vol.59 , pp. 85-99
    • Hughes, T.J.R.1    Franca, L.P.2    Balestra, M.3
  • 6
    • 0023450642 scopus 로고
    • A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity pressure spaces
    • Hughes TJR, Franca LP. A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity pressure spaces. Computer Methods in Applied Mechanics and Engineering 1987; 65:85-96.
    • (1987) Computer Methods in Applied Mechanics and Engineering , vol.65 , pp. 85-96
    • Hughes, T.J.R.1    Franca, L.P.2
  • 7
    • 84966220003 scopus 로고
    • An absolutely stabilized finite element method for the Stokes problem
    • Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem. Mathematics of Computation 1989; 52:495-508.
    • (1989) Mathematics of Computation , vol.52 , pp. 495-508
    • Douglas, J.1    Wang, J.2
  • 8
    • 0027574109 scopus 로고
    • Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows
    • Behr M, Franca L, Tezduyar T. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering 1993; 104:31-48.
    • (1993) Computer Methods in Applied Mechanics and Engineering , vol.104 , pp. 31-48
    • Behr, M.1    Franca, L.2    Tezduyar, T.3
  • 10
    • 21244478312 scopus 로고    scopus 로고
    • An absolutely stable Pressure-Poisson stabilized method for the Stokes equations
    • to appear
    • Bochev P, Gunzburger M. An absolutely stable Pressure-Poisson stabilized method for the Stokes equations. SIAM Journal on Numerical Analysis, to appear.
    • SIAM Journal on Numerical Analysis
    • Bochev, P.1    Gunzburger, M.2
  • 12
    • 4344681675 scopus 로고    scopus 로고
    • A taxonomy of consistently stabilized finite element methods for the Stokes problem
    • Barth T, Bochev P, Gunzburger M, Shadid JN. A Taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM Journal on Scientific Computing 2004; 25(5):1585-1607.
    • (2004) SIAM Journal on Scientific Computing , vol.25 , Issue.5 , pp. 1585-1607
    • Barth, T.1    Bochev, P.2    Gunzburger, M.3    Shadid, J.N.4
  • 13
    • 0034681607 scopus 로고    scopus 로고
    • Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection
    • Blasco J, Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Computer Methods in Applied Mechanics and Engineering 2000; 182:277-300.
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.182 , pp. 277-300
    • Blasco, J.1    Codina, R.2
  • 14
    • 0035451015 scopus 로고    scopus 로고
    • Space and time error estimates for a first-order, pressure stabilized finite element method for the incompressible Navier-Stokes equations
    • Blasco J, Codina R. Space and time error estimates for a first-order, pressure stabilized finite element method for the incompressible Navier-Stokes equations. Applied Numerical Mathematics 2001; 38:475-497.
    • (2001) Applied Numerical Mathematics , vol.38 , pp. 475-497
    • Blasco, J.1    Codina, R.2
  • 15
    • 0034555295 scopus 로고    scopus 로고
    • Analysis of a pressure stabilized finite element approximation of the stationary Navier-Stokes equations
    • Codina R, Blasco J. Analysis of a pressure stabilized finite element approximation of the stationary Navier-Stokes equations. Numerische Mathematik 2000; 87:59-81.
    • (2000) Numerische Mathematik , vol.87 , pp. 59-81
    • Codina, R.1    Blasco, J.2
  • 16
    • 0025404289 scopus 로고
    • Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes Problem
    • Silvester DJ, Kechkar N. Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes Problem. Computer Methods in Applied Mechanics and Engineering 1990; 79:71-86.
    • (1990) Computer Methods in Applied Mechanics and Engineering , vol.79 , pp. 71-86
    • Silvester, D.J.1    Kechkar, N.2
  • 18
    • 0347487573 scopus 로고
    • An analysis of the penalty method and extrapolation for the stationary Stokes equations
    • Vichnevetsky R (ed.). AICA: New Brunswick, NJ
    • Falk R. An analysis of the penalty method and extrapolation for the stationary Stokes equations. In Advances in Computer Methods for Partial Differential Equations, Vichnevetsky R (ed.). AICA: New Brunswick, NJ, 1975; 66-69.
    • (1975) Advances in Computer Methods for Partial Differential Equations , pp. 66-69
    • Falk, R.1
  • 19
    • 0018329975 scopus 로고
    • Finite element analysis of incompressible viscous flows by the penalty function formulation
    • Hughes TJR, Liu W, Brooks A. Finite element analysis of incompressible viscous flows by the penalty function formulation. Journal of Computational Physics 1979; 30:1-60.
    • (1979) Journal of Computational Physics , vol.30 , pp. 1-60
    • Hughes, T.J.R.1    Liu, W.2    Brooks, A.3
  • 20
    • 4344565461 scopus 로고
    • Analysis of mixed finite element methods related to reduced integration
    • Johnson C, Pitkaranta J. Analysis of mixed finite element methods related to reduced integration. Mathematics of Computation 1984; 42:9-23.
    • (1984) Mathematics of Computation , vol.42 , pp. 9-23
    • Johnson, C.1    Pitkaranta, J.2
  • 21
    • 0020280552 scopus 로고
    • RIP-Methods for Stokesian flow
    • Gallagher RH, Norrie DH, Oden JT, Zienkiewicz OC (eds). Wiley: Chichester
    • Oden TJ. RIP-Methods for Stokesian flow. In Finite Elements in Fluids, Vol. 4, Gallagher RH, Norrie DH, Oden JT, Zienkiewicz OC (eds). Wiley: Chichester, 1982; 305-318.
    • (1982) Finite Elements in Fluids , vol.4 , pp. 305-318
    • Oden, T.J.1
  • 22
    • 4344624792 scopus 로고    scopus 로고
    • An analysis of a polynomial pressure projection stabilized method for the Stokes equations
    • submitted
    • Bochev P, Dohrmann C, Gunzburger M. An analysis of a polynomial pressure projection stabilized method for the Stokes equations. SIAM Journal on Numerical Analysis (submitted).
    • SIAM Journal on Numerical Analysis
    • Bochev, P.1    Dohrmann, C.2    Gunzburger, M.3
  • 23
    • 0036906639 scopus 로고    scopus 로고
    • The finite element method for elliptic problems
    • Society for Industrial and Applied Mathematics, Philadelphia, PA
    • Ciarlet P. The finite element method for elliptic problems. SIAM Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002.
    • (2002) SIAM Classics in Applied Mathematics
    • Ciarlet, P.1
  • 25
    • 0003474648 scopus 로고    scopus 로고
    • Prentice-Hall: Upper Saddle River, New Jersey
    • Bathe KJ. Finite Element Procedures. Prentice-Hall: Upper Saddle River, New Jersey, 1996.
    • (1996) Finite Element Procedures
    • Bathe, K.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.