-
1
-
-
0035904467
-
-
S. Hess, M. Götz, W. B. Davis, M.-E. Michel-Beyerle, J. Am. Chem. Soc. 2001, 123, 10046.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 10046
-
-
Hess, S.1
Götz, M.2
Davis, W.B.3
Michel-Beyerle, M.-E.4
-
4
-
-
4544342687
-
-
C. Behrens, L. T. Burgdorf, A. Schwögler, T. Carell, Angew. Chem. 2002, 114, 1841; Angew. Chem. Int. Ed. 2002, 41, 1763; T. Carell, C. Behrens, J. Gierlich, Org. Biomol. Chem. 2003, 1, 2221.
-
(2002)
Angew. Chem.
, vol.114
, pp. 841
-
-
Behrens, C.1
Burgdorf, L.T.2
Schwögler, A.3
Carell, T.4
-
5
-
-
0036259993
-
-
C. Behrens, L. T. Burgdorf, A. Schwögler, T. Carell, Angew. Chem. 2002, 114, 1841; Angew. Chem. Int. Ed. 2002, 41, 1763; T. Carell, C. Behrens, J. Gierlich, Org. Biomol. Chem. 2003, 1, 2221.
-
(2002)
Angew. Chem. Int. Ed.
, vol.41
, pp. 1763
-
-
-
6
-
-
0041806649
-
-
C. Behrens, L. T. Burgdorf, A. Schwögler, T. Carell, Angew. Chem. 2002, 114, 1841; Angew. Chem. Int. Ed. 2002, 41, 1763; T. Carell, C. Behrens, J. Gierlich, Org. Biomol. Chem. 2003, 1, 2221.
-
(2003)
Org. Biomol. Chem.
, vol.1
, pp. 2221
-
-
Carell, T.1
Behrens, C.2
Gierlich, J.3
-
7
-
-
4544229109
-
-
in press
-
S. Breeger, U. Hennecke, T. Carell, J. Am Chem. Soc. in press; C. Haas, K. Krähling, M. Cichon, N. Rahe, T. Carell, Angew. Chem. 2004, 116, 1878; Angew. Chem. Int. Ed. 2004, 43, 1842.
-
J. Am Chem. Soc.
-
-
Breeger, S.1
Hennecke, U.2
Carell, T.3
-
8
-
-
4544339104
-
-
S. Breeger, U. Hennecke, T. Carell, J. Am Chem. Soc. in press; C. Haas, K. Krähling, M. Cichon, N. Rahe, T. Carell, Angew. Chem. 2004, 116, 1878; Angew. Chem. Int. Ed. 2004, 43, 1842.
-
(2004)
Angew. Chem.
, vol.116
, pp. 1878
-
-
Haas, C.1
Krähling, K.2
Cichon, M.3
Rahe, N.4
Carell, T.5
-
9
-
-
4344655070
-
-
S. Breeger, U. Hennecke, T. Carell, J. Am Chem. Soc. in press; C. Haas, K. Krähling, M. Cichon, N. Rahe, T. Carell, Angew. Chem. 2004, 116, 1878; Angew. Chem. Int. Ed. 2004, 43, 1842.
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 1842
-
-
-
10
-
-
0141645602
-
-
T. Ito, S. E. Rokita, J. Am. Chem. Soc. 2003, 125, 11480; T. Ito, S. E. Rokita, Angew. Chem. 2004, 116, 1875; Angew. Chem. Int. Ed. 2004, 43, 1839.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11480
-
-
Ito, T.1
Rokita, S.E.2
-
11
-
-
0141645602
-
-
T. Ito, S. E. Rokita, J. Am. Chem. Soc. 2003, 125, 11480; T. Ito, S. E. Rokita, Angew. Chem. 2004, 116, 1875; Angew. Chem. Int. Ed. 2004, 43, 1839.
-
(2004)
Angew. Chem.
, vol.116
, pp. 1875
-
-
Ito, T.1
Rokita, S.E.2
-
12
-
-
4344696309
-
-
T. Ito, S. E. Rokita, J. Am. Chem. Soc. 2003, 125, 11480; T. Ito, S. E. Rokita, Angew. Chem. 2004, 116, 1875; Angew. Chem. Int. Ed. 2004, 43, 1839.
-
(2004)
Angew. Chem. Int. Ed.
, vol.43
, pp. 1839
-
-
-
13
-
-
0026766945
-
-
S. Steenken, J. P. Telo, L. P. Novais, L. P. Candeias, J. Am. Chem. Soc. 1992, 114, 4701; C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem. 1996, 100, 5541; S.S. Wesolowski, M. L. Leininger, P. N. Pentchev, H. F. Schaefer, J. Am. Chem. Soc. 2001, 123, 4023.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 4701
-
-
Steenken, S.1
Telo, J.P.2
Novais, L.P.3
Candeias, L.P.4
-
14
-
-
33748595282
-
-
S. Steenken, J. P. Telo, L. P. Novais, L. P. Candeias, J. Am. Chem. Soc. 1992, 114, 4701; C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem. 1996, 100, 5541; S.S. Wesolowski, M. L. Leininger, P. N. Pentchev, H. F. Schaefer, J. Am. Chem. Soc. 2001, 123, 4023.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 5541
-
-
Seidel, C.A.M.1
Schulz, A.2
Sauer, M.H.M.3
-
15
-
-
0034793909
-
-
S. Steenken, J. P. Telo, L. P. Novais, L. P. Candeias, J. Am. Chem. Soc. 1992, 114, 4701; C. A. M. Seidel, A. Schulz, M. H. M. Sauer, J. Phys. Chem. 1996, 100, 5541; S.S. Wesolowski, M. L. Leininger, P. N. Pentchev, H. F. Schaefer, J. Am. Chem. Soc. 2001, 123, 4023.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4023
-
-
Wesolowski, S.S.1
Leininger, M.L.2
Pentchev, P.N.3
Schaefer, H.F.4
-
17
-
-
4544290978
-
-
note
-
The details of the synthesis will be described in a full paper.
-
-
-
-
18
-
-
2442555972
-
-
5, a conversion time of 40.96 ms, and with a time constant of 40.96 ms. The ESR spectrum obtained immediately after irradiation is a superposition of the spectra from the few-butyl radical, the thymine-based radical, and the ketyl radical. After one week, only the thymine-based radical was detectable; the two other radicals had decayed. The formation of the three constituents and the analysis of the spectra are similar to the processes described in O. Schiemann, E. Feresin, T. Carl, B. Giese, ChemPhysChem 2004, 5, 270.
-
(2004)
ChemPhysChem
, vol.5
, pp. 270
-
-
Schiemann, O.1
Feresin, E.2
Carl, T.3
Giese, B.4
-
19
-
-
0013780687
-
-
B. Pruden, W. Snipes, W. Gordy, Proc. Natl. Acad. Sci. USA 1965, 53, 917.
-
(1965)
Proc. Natl. Acad. Sci. USA
, vol.53
, pp. 917
-
-
Pruden, B.1
Snipes, W.2
Gordy, W.3
-
20
-
-
0031735506
-
-
Analogous systems cleave the tert-butyl ketone with a quantum yield of more than 50%: S. Peukert, B. Giese, J. Org. Chem. 1998, 63, 9045.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 9045
-
-
Peukert, S.1
Giese, B.2
-
21
-
-
4544253211
-
-
note
-
3OH (4:1) were irradiated for 10 min with a 500-W mercury arc lamp (320-nm cut-off filter) and the products 6 and 7 were analyzed by HPLC (co-injection and MS). Deprotonabon of the hydroxyalkyl radical has to occur for efficient electron transfer from the electron-injecting radical to the thymine. In DNA experiments, the surrounding water or phosphate ions might accept the proton. Even the neighboring carbonyl group could assist the deprotonation of the hydroxyalkyl radical. Thus, electron transfer is presumably coupled with proton transfer.
-
-
-
-
22
-
-
4544334119
-
-
note
-
In systems in which the thymine in 3 was replaced with adenine or benzene, only the corresponding alcohols were formed.
-
-
-
-
23
-
-
0030887103
-
-
M. P. Scannel, D. J. Fenick, S.-R. Yeh, D. E. Falvey, J. Am. Chem. Soc. 1997, 119, 1971.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 1971
-
-
Scannel, M.P.1
Fenick, D.J.2
Yeh, S.-R.3
Falvey, D.E.4
-
24
-
-
4544231964
-
-
note
-
2 was used as a solvent. Complementary strands slightly longer than the modified strands were used to improve the separation achievable by HPLC. The melting points of the double strands were up to 4 °C higher than those of the unmodified strands. All melting points measured under the conditions of the photolysis experiments were above 60 °C.
-
-
-
-
25
-
-
4544285888
-
-
note
-
2 at 15 °C. After 10 min, the solutions were quantitatively analyzed by reversed-phase HPLC (Merck RP-18e; LiChrospher, 5 μm; linear gradient of 0.1M triethylammonium acetate buffer/acetonitrile from 94:6 to 80:20 over 40 min) and by MALDI TOF mass spectrometry. The relative errors in the reported yields are ±5 % for 12, 13, 15, and 16 and ±25% for 17.
-
-
-
-
26
-
-
2442552178
-
-
H.-A. Wagenknecht, Angew. Chem. 2003, 115, 2558; Angew. Chem. Int. Ed. 2003, 42, 2454; B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M.-E. Michel-Beyerle, Angew. Chem. 1999, 111, 1050; Angew. Chem. Int. Ed. 1999, 38, 996.
-
(2003)
Angew. Chem.
, vol.115
, pp. 2558
-
-
Wagenknecht, H.-A.1
-
27
-
-
0038304533
-
-
H.-A. Wagenknecht, Angew. Chem. 2003, 115, 2558; Angew. Chem. Int. Ed. 2003, 42, 2454; B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M.-E. Michel-Beyerle, Angew. Chem. 1999, 111, 1050; Angew. Chem. Int. Ed. 1999, 38, 996.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 2454
-
-
-
28
-
-
0000575279
-
-
H.-A. Wagenknecht, Angew. Chem. 2003, 115, 2558; Angew. Chem. Int. Ed. 2003, 42, 2454; B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M.-E. Michel-Beyerle, Angew. Chem. 1999, 111, 1050; Angew. Chem. Int. Ed. 1999, 38, 996.
-
(1999)
Angew. Chem.
, vol.111
, pp. 1050
-
-
Giese, B.1
Wessely, S.2
Spormann, M.3
Lindemann, U.4
Meggers, E.5
Michel-Beyerle, M.-E.6
-
29
-
-
0033119286
-
-
H.-A. Wagenknecht, Angew. Chem. 2003, 115, 2558; Angew. Chem. Int. Ed. 2003, 42, 2454; B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M.-E. Michel-Beyerle, Angew. Chem. 1999, 111, 1050; Angew. Chem. Int. Ed. 1999, 38, 996.
-
(1999)
Angew. Chem. Int. Ed.
, vol.38
, pp. 996
-
-
-
30
-
-
4544349079
-
-
note
-
Our assay injects only one electron per strand. The cleavage of the distal site is not the result of a second charge injection step, as occurs in experiments with recoverable photoinjectors. Our cleavage yields should therefore be compared with quantum yields.
-
-
-
-
31
-
-
0030700313
-
-
-1: T. Langenbacher, X. Zhao, G. Bieser, P. F. Heelies, A. Sancar, M.-E. Michel-Beyerle, J. Am. Chem. Soc. 1997, 119, 10532; A. W. MacFarlane IV, R. J. Stanley, Biochemistry 2003, 42, 8558. The recently reported X-ray structure leads to the conclusion that the thymine dimer radical anion might transfer the electron faster in the 3′ than in the 5′ direction because the 3′ site is a normal B-DNA site, whereas the 5′ site is distorted: H. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J.-S. Taylor, C. Jang, Proc. Natl. Acad. Sci. USA 2002, 99, 15965.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10532
-
-
Langenbacher, T.1
Zhao, X.2
Bieser, G.3
Heelies, P.F.4
Sancar, A.5
Michel-Beyerle, M.-E.6
-
32
-
-
0038116610
-
-
-1: T. Langenbacher, X. Zhao, G. Bieser, P. F. Heelies, A. Sancar, M.-E. Michel-Beyerle, J. Am. Chem. Soc. 1997, 119, 10532; A. W. MacFarlane IV, R. J. Stanley, Biochemistry 2003, 42, 8558. The recently reported X-ray structure leads to the conclusion that the thymine dimer radical anion might transfer the electron faster in the 3′ than in the 5′ direction because the 3′ site is a normal B-DNA site, whereas the 5′ site is distorted: H. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J.-S. Taylor, C. Jang, Proc. Natl. Acad. Sci. USA 2002, 99, 15965.
-
(2003)
Biochemistry
, vol.42
, pp. 8558
-
-
MacFarlane IV, A.W.1
Stanley, R.J.2
-
33
-
-
18744401872
-
-
-1: T. Langenbacher, X. Zhao, G. Bieser, P. F. Heelies, A. Sancar, M.-E. Michel-Beyerle, J. Am. Chem. Soc. 1997, 119, 10532; A. W. MacFarlane IV, R. J. Stanley, Biochemistry 2003, 42, 8558. The recently reported X-ray structure leads to the conclusion that the thymine dimer radical anion might transfer the electron faster in the 3′ than in the 5′ direction because the 3′ site is a normal B-DNA site, whereas the 5′ site is distorted: H. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J.-S. Taylor, C. Jang, Proc. Natl. Acad. Sci. USA 2002, 99, 15965.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 15965
-
-
Park, H.1
Zhang, K.2
Ren, Y.3
Nadji, S.4
Sinha, N.5
Taylor, J.-S.6
Jang, C.7
-
34
-
-
0000364937
-
-
The transition states for electron transfer between two thymine residues are probably at slightly lower energies than the transition state between thymine and its dimer because of small differences in the redox potentials of the thymine species: M. P. Scannell, G. Prakash, D. E. Falvey, J. Phys. Chem. A 1997, 101, 4332.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 4332
-
-
Scannell, M.P.1
Prakash, G.2
Falvey, D.E.3
-
35
-
-
0037174421
-
-
F. D. Lewis, X. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski, J. Am. Chem. Soc. 2002, 124, 11280.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11280
-
-
Lewis, F.D.1
Liu, X.2
Miller, S.E.3
Hayes, R.T.4
Wasielewski, M.R.5
|