메뉴 건너뛰기




Volumn , Issue , 2008, Pages 356-367

Efficient online top-k retrieval with arbitrary similarity measures

Author keywords

Index structures; K nearest neighbors; Similarity measures

Indexed keywords

COMPUTATIONAL METHODS; DATA STRUCTURES; INDEXING (OF INFORMATION); INFORMATION MANAGEMENT; MIDDLEWARE;

EID: 43349104169     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1353343.1353388     Document Type: Conference Paper
Times cited : (28)

References (23)
  • 1
    • 43349101340 scopus 로고    scopus 로고
    • How fast is your disk? http://www. linuxinsight.com/how_fast_is-your- disk. html, January 2007.
    • How fast is your disk? http://www. linuxinsight.com/how_fast_is-your- disk. html, January 2007.
  • 2
    • 84893849762 scopus 로고    scopus 로고
    • Io-top-k: Index-access optimized top-k query processing
    • H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-k: Index-access optimized top-k query processing. In VLDB, pages 475-486, 2006.
    • (2006) VLDB , pp. 475-486
    • Bast, H.1    Majumdar, D.2    Schenkel, R.3    Theobald, M.4    Weikum, G.5
  • 4
    • 0036372482 scopus 로고    scopus 로고
    • Minimal probing: Supporting expensive predicates for top-k queries
    • K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive predicates for top-k queries. In SIGMOD Conference, pages 346-357, 2002.
    • (2002) SIGMOD Conference , pp. 346-357
    • Chang, K.C.-C.1    won Hwang, S.2
  • 5
    • 43349099742 scopus 로고    scopus 로고
    • Gray and Horst. Windows 2000 disk io performance
    • MSTR-2000-55, June
    • W. Chung, Gray and Horst. Windows 2000 disk io performance. Microsoft Research Technical Report, MSTR-2000-55, June 2000.
    • (2000) Microsoft Research Technical Report
    • Chung, W.1
  • 7
    • 0042194447 scopus 로고    scopus 로고
    • D-index: Distance searching index for metric data sets
    • V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching index for metric data sets. Multimedia Tools Appl., 21(1):9-33, 2003.
    • (2003) Multimedia Tools Appl , vol.21 , Issue.1 , pp. 9-33
    • Dohnal, V.1    Gennaro, C.2    Savino, P.3    Zezula, P.4
  • 8
    • 0029706597 scopus 로고    scopus 로고
    • Combining fuzzy information from multiple systems
    • ACM Press
    • R. Fagin. Combining fuzzy information from multiple systems. In PODS, pages 216-226. ACM Press, 1996.
    • (1996) PODS , pp. 216-226
    • Fagin, R.1
  • 9
    • 0012413062 scopus 로고    scopus 로고
    • Combining fuzzy information: An overview
    • R. Fagin. Combining fuzzy information: an overview. SIGMOD Record, 31(2):109-118, 2002.
    • (2002) SIGMOD Record , vol.31 , Issue.2 , pp. 109-118
    • Fagin, R.1
  • 10
    • 0038504811 scopus 로고    scopus 로고
    • Optimal aggregation algorithms for middleware
    • R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci., 66(4):614-656, 2003.
    • (2003) J. Comput. Syst. Sci , vol.66 , Issue.4 , pp. 614-656
    • Fagin, R.1    Lotem, A.2    Naor, M.3
  • 12
    • 43349096385 scopus 로고    scopus 로고
    • Towards efficient multi-feature queries in heterogeneous environments
    • 00:0622
    • U. Guntzer, W.-T. Balke, and W. Kiesling. Towards efficient multi-feature queries in heterogeneous environments, itcc, 00:0622, 2001.
    • (2001) itcc
    • Guntzer, U.1    Balke, W.-T.2    Kiesling, W.3
  • 13
    • 0020824191 scopus 로고
    • A data structure and an algorithm for the nearest point problem
    • I. Kalantari and G. McDonald. A data structure and an algorithm for the nearest point problem. IEEE Trans. Software Eng., 9(5):631-634, 1983.
    • (1983) IEEE Trans. Software Eng , vol.9 , Issue.5 , pp. 631-634
    • Kalantari, I.1    McDonald, G.2
  • 15
    • 33749624867 scopus 로고    scopus 로고
    • Efficient aggregation of ranked inputs
    • L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, IEEE Computer Society
    • N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung. Efficient aggregation of ranked inputs. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, ICDE, page 72. IEEE Computer Society, 2006.
    • (2006) ICDE , pp. 72
    • Mamoulis, N.1    Cheng, K.H.2    Yiu, M.L.3    Cheung, D.W.4
  • 16
    • 33745618695 scopus 로고    scopus 로고
    • Learning similarity functions in information retrieval
    • T. Mandl. Learning similarity functions in information retrieval. In EUFIT, pages 771-775, 1998.
    • (1998) EUFIT , pp. 771-775
    • Mandl, T.1
  • 17
    • 3142592508 scopus 로고    scopus 로고
    • Evaluating top-queries over web-accessible databases
    • A. Marian, N. Bruno, and L. Gravano. Evaluating top-queries over web-accessible databases. ACM Trans. Database Syst., 29(2):319-362, 2004.
    • (2004) ACM Trans. Database Syst , vol.29 , Issue.2 , pp. 319-362
    • Marian, A.1    Bruno, N.2    Gravano, L.3
  • 18
    • 33745601374 scopus 로고    scopus 로고
    • On fast non-metric similarity search by metric access methods
    • T. Skopal. On fast non-metric similarity search by metric access methods. In EDBT, pages 718-736, 2006.
    • (2006) EDBT , pp. 718-736
    • Skopal, T.1
  • 19
    • 43349099026 scopus 로고    scopus 로고
    • M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic guarantees. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, VLDB, pages 648-659. Morgan Kaufmann, 2004.
    • M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic guarantees. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, VLDB, pages 648-659. Morgan Kaufmann, 2004.
  • 20
    • 0026256261 scopus 로고
    • Satisfying general proximity/similarity queries with metric trees
    • J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters, 40(4):175-179, 1991.
    • (1991) Information Processing Letters , vol.40 , Issue.4 , pp. 175-179
    • Uhlmann, J.K.1
  • 21
    • 0003046095 scopus 로고
    • New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (aesa)
    • E. Vidal. New formulation and improvements of the nearest-neighbour approximating and eliminating search algorithm (aesa). Pattern Recognition Letters, 15(1):1-7, 1994.
    • (1994) Pattern Recognition Letters , vol.15 , Issue.1 , pp. 1-7
    • Vidal, E.1
  • 22
    • 35448935270 scopus 로고    scopus 로고
    • Progressive and selective merge: Computing top-k with ad-hoc ranking functions
    • D. Xin, J. Han, and K. C.-C. Chang. Progressive and selective merge: computing top-k with ad-hoc ranking functions. In SIGMOD Conference, pages 103-114, 2007.
    • (2007) SIGMOD Conference , pp. 103-114
    • Xin, D.1    Han, J.2    Chang, K.C.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.