메뉴 건너뛰기




Volumn 25, Issue 2, 2008, Pages 143-152

A clustering approach for the separation of touching edges in particle images

Author keywords

Clustering; Image analysis; Particle; Particle size; Segmentation; Touching edges

Indexed keywords

FUZZY CLUSTERING; IMAGE ACQUISITION; IMAGE SEGMENTATION; MEMBERSHIP FUNCTIONS; PARTICLE SIZE ANALYSIS; PIXELS;

EID: 43249085785     PISSN: 09340866     EISSN: 15214117     Source Type: Journal    
DOI: 10.1002/ppsc.200701107     Document Type: Article
Times cited : (5)

References (21)
  • 1
    • 0031621729 scopus 로고    scopus 로고
    • A method for measuring particle size in overlapped particle images.
    • 1 X. Song, F. Yamamoto, M. Iguchi, L. Shen, X. Ruan, K. Ishi, A method for measuring particle size in overlapped particle images. ISIJ Intl. 1998, 38, 971–976.
    • (1998) ISIJ Intl. , vol.38 , pp. 971-976
    • Song, X.1    Yamamoto, F.2    Iguchi, M.3    Shen, L.4    Ruan, X.5    Ishi, K.6
  • 2
    • 0033883235 scopus 로고    scopus 로고
    • A method for recognizing particle in overlapped particle images.
    • 2 L. Shen, X. Song, M. Iguchi, F. Yamamoto, A method for recognizing particle in overlapped particle images. Pattern Recogn. Lett. 2000, 21, 21–30.
    • (2000) Pattern Recogn. Lett. , vol.21 , pp. 21-30
    • Shen, L.1    Song, X.2    Iguchi, M.3    Yamamoto, F.4
  • 3
    • 0030107708 scopus 로고    scopus 로고
    • Recognition of partial circular contours from segmented contours.
    • 3 F. Pla, Recognition of partial circular contours from segmented contours. Comput. Vis. Image Understand. 1996, 63, 334–343.
    • (1996) Comput. Vis. Image Understand. , vol.63 , pp. 334-343
    • Pla, F.1
  • 4
    • 84981389674 scopus 로고
    • On the use of geodesic metric in image analysis.
    • 4 C. Lantuejoul, S. Beucher, On the use of geodesic metric in image analysis. J. Microsc. 1981, 121, 39–49.
    • (1981) J. Microsc. , vol.121 , pp. 39-49
    • Lantuejoul, C.1    Beucher, S.2
  • 5
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: an efficient algorithm based on immersion simulation.
    • 5 L. Vincent, P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulation. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 7
    • 0030114292 scopus 로고    scopus 로고
    • Image processing for particle characterization.
    • 7 A. M. Nazar, F. A. Silva, J. J. Amman, Image processing for particle characterization. Mater. Char. 1996, 36, 165–173.
    • (1996) Mater. Char. , vol.36 , pp. 165-173
    • Nazar, A. M.1    Silva, F. A.2    Amman, J. J.3
  • 8
    • 0029158812 scopus 로고
    • Image processing for online monitoring of granule size distribution and shape in fluidized bed granulation.
    • 8 S. Watano, K. Miyanami, Image processing for online monitoring of granule size distribution and shape in fluidized bed granulation. Powder Tech. 1995, 83, 55–60.
    • (1995) Powder Tech. , vol.83 , pp. 55-60
    • Watano, S.1    Miyanami, K.2
  • 9
    • 85120587184 scopus 로고    scopus 로고
    • 9 R. C. Gonzalez, R. E. Woods, Digital Image Processing. Prentice Hall, Upper Saddle River, New Jersey, 2002.
  • 10
    • 0029280595 scopus 로고
    • Image segmentation using fuzzy rules derived from K‐means clusters.
    • 10 Z. Chi, H. Yan, Image segmentation using fuzzy rules derived from K ‐means clusters. J. Electron Imag. 1995, 4, 199–206.
    • (1995) J. Electron Imag. , vol.4 , pp. 199-206
    • Chi, Z.1    Yan, H.2
  • 11
    • 43249110905 scopus 로고    scopus 로고
    • Segmentation of MRI using new unsupervised Fuzzy C‐Means algorithm.
    • 11 S. R. Kannan, Segmentation of MRI using new unsupervised Fuzzy C ‐Means algorithm. ICGST Intl. J. Graph. Vis. Image Process. 2005, 5, 17–23.
    • (2005) ICGST Intl. J. Graph. Vis. Image Process. , vol.5 , pp. 17-23
    • Kannan, S. R.1
  • 13
    • 0027275316 scopus 로고
    • Review of MR Image segmentation techniques using pattern recognition.
    • 13 J. C. Bezdeck, L. O. Hall, L. P. Clarke, Review of MR Image segmentation techniques using pattern recognition. Med. Phys. 1993, 20, 1033–1048.
    • (1993) Med. Phys. , vol.20 , pp. 1033-1048
    • Bezdeck, J. C.1    Hall, L. O.2    Clarke, L. P.3
  • 16
    • 85120595019 scopus 로고    scopus 로고
    • 16 J. C. Russ, Image Processing Handbook. CRC Press, Florida, 2002.
  • 17
    • 0016943204 scopus 로고
    • Picture segmentation by a tree traversal algorithm.
    • 17 S. L. Horowitz, T. Pavlidis, Picture segmentation by a tree traversal algorithm. J. ACM. 1976, 23, 368–388.
    • (1976) J. ACM. , vol.23 , pp. 368-388
    • Horowitz, S. L.1    Pavlidis, T.2
  • 18
    • 0018306059 scopus 로고
    • A threshold selection method from gray level histogram.
    • 18 N. Otsu, A threshold selection method from gray level histogram. IEEE Trans. Syst. Man Cyber. 1979, 9, 62–66.
    • (1979) IEEE Trans. Syst. Man Cyber. , vol.9 , pp. 62-66
    • Otsu, N.1
  • 19
    • 85120589273 scopus 로고    scopus 로고
    • 19 C. W. Therrien, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics. John Wiley & Sons, New York, 1989.
  • 20
    • 85120590928 scopus 로고    scopus 로고
    • 20 J. C. Bezdek, S. K. Pal, Fuzzy Models for Pattern Recognition. IEEE Press, New York, 1992.
  • 21
    • 0021583718 scopus 로고
    • FCM: The fuzzy C Means clustering algorithm.
    • 21 J. C. Bezdeck, R. Ehrlich, W. Full, FCM: The fuzzy C Means clustering algorithm. Comput. Geosci. 1984, 10, 191–203.
    • (1984) Comput. Geosci. , vol.10 , pp. 191-203
    • Bezdeck, J. C.1    Ehrlich, R.2    Full, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.