-
1
-
-
21844517139
-
Linear-size nonobtuse triangulation of polygons
-
Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Disc. Comput. Geom. 14, 411-428 (1995)
-
(1995)
Disc. Comput. Geom
, vol.14
, pp. 411-428
-
-
Bern, M.1
Mitchell, S.2
Ruppert, J.3
-
3
-
-
0038900055
-
A disk-packing algorithm for an origami magic trick
-
E. Lodi, L. Pagli, N. Santoro, eds, Carleton Scientific
-
Bern, M., Demaine, E., Eppstein, D., Hayes, B.: A disk-packing algorithm for an origami magic trick. In: E. Lodi, L. Pagli, N. Santoro, (eds.) Preliminary version: Fun with Algorithms, pp. 32-42, Carleton Scientific (1999);
-
(1999)
Preliminary version: Fun with Algorithms
, pp. 32-42
-
-
Bern, M.1
Demaine, E.2
Eppstein, D.3
Hayes, B.4
-
4
-
-
43049110369
-
-
3, pp. 17-28 (2002)
-
3, pp. 17-28 (2002)
-
-
-
-
5
-
-
0041621914
-
Polyhedral realizations of developments (Russian)
-
Burago, Y.D., Zalgaller, V.A.: Polyhedral realizations of developments (Russian). Vestnik Leningrad. Univ. 15, 66-80 (1960)
-
(1960)
Vestnik Leningrad. Univ
, vol.15
, pp. 66-80
-
-
Burago, Y.D.1
Zalgaller, V.A.2
-
6
-
-
43049118389
-
-
3. St. Petersburg Math. Journal 7, 369-385 (1996)
-
3. St. Petersburg Math. Journal 7, 369-385 (1996)
-
-
-
-
7
-
-
0347683776
-
A flexible sphere
-
Connelly, R.: A flexible sphere. Math. Intelligencer 1, 130-131 (1978)
-
(1978)
Math. Intelligencer
, vol.1
, pp. 130-131
-
-
Connelly, R.1
-
8
-
-
0039349331
-
The bellows conjecture
-
Connelly, R., Sabitov, I., Walz, A.: The bellows conjecture. Contributions to Algebra and Geometry 38, 1-10 (1997)
-
(1997)
Contributions to Algebra and Geometry
, vol.38
, pp. 1-10
-
-
Connelly, R.1
Sabitov, I.2
Walz, A.3
-
10
-
-
84924606008
-
-
Cambridge University Press, Cambridge
-
Demaine, E., O'Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra, Cambridge University Press, Cambridge (2007)
-
(2007)
Geometric Folding Algorithms: Linkages, Origami, and Polyhedra
-
-
Demaine, E.1
O'Rourke, J.2
-
12
-
-
0013032823
-
On the mathematics of flat origamis
-
Hull, T.: On the mathematics of flat origamis. Congressus Numerantium 100, 215-224 (1994)
-
(1994)
Congressus Numerantium
, vol.100
, pp. 215-224
-
-
Hull, T.1
-
13
-
-
43049106252
-
Approximating short maps by PL-isometries and Arnold's "Can you make your dollar bigger" problem
-
Pasadena
-
Krat, S., Burago, Y.D., Petrunin, A.: Approximating short maps by PL-isometries and Arnold's "Can you make your dollar bigger" problem. In: Fourth International Meeting of Origami Science, Mathematics, and Education, Pasadena (2006)
-
(2006)
Fourth International Meeting of Origami Science, Mathematics, and Education
-
-
Krat, S.1
Burago, Y.D.2
Petrunin, A.3
-
14
-
-
0008726844
-
1-isometric imbeddings I
-
Proc. Nederl. Akad. Wetensch
-
1-isometric imbeddings I. Proc. Nederl. Akad. Wetensch, Ser. A 58, 545-556 (1955)
-
(1955)
Ser. A
, vol.58
, pp. 545-556
-
-
Kuiper, N.H.1
-
15
-
-
85055933268
-
-
Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art, A.K. Peters (2003)
-
Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art, A.K. Peters (2003)
-
-
-
-
16
-
-
0001636186
-
1-isometric imbeddings
-
1-isometric imbeddings. Annals of Mathematics 60, 383-396 (1954)
-
(1954)
Annals of Mathematics
, vol.60
, pp. 383-396
-
-
Nash, J.F.1
-
17
-
-
0002702476
-
The imbedding problem for Riemannian manifolds
-
Nash, J.F.: The imbedding problem for Riemannian manifolds. Annals of Mathematics 63, 20-63 (1956)
-
(1956)
Annals of Mathematics
, vol.63
, pp. 20-63
-
-
Nash, J.F.1
-
18
-
-
35348856176
-
-
Department of Mathematics. MIT Press, Cambridge
-
Pak, I.: Inflating polyhedral surfaces. Department of Mathematics. MIT Press, Cambridge (2006)
-
(2006)
Inflating polyhedral surfaces
-
-
Pak, I.1
-
20
-
-
43049148820
-
Some bendings of a long cylinder
-
Zalgaller, V.A.: Some bendings of a long cylinder. J. Math. Soc. 100, 2228-2238 (2000)
-
(2000)
J. Math. Soc
, vol.100
, pp. 2228-2238
-
-
Zalgaller, V.A.1
|