메뉴 건너뛰기




Volumn 77, Issue 5, 2008, Pages

Nonclassical correlation in a multipartite quantum system: Two measures and evaluation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; EIGENVALUES AND EIGENFUNCTIONS; QUANTUM THEORY; UNCERTAINTY ANALYSIS;

EID: 43049098984     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.77.052101     Document Type: Article
Times cited : (25)

References (21)
  • 1
    • 0039624459 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.40.4277
    • R. F. Werner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.40.4277 40, 4277 (1989).
    • (1989) Phys. Rev. A , vol.40 , pp. 4277
    • Werner, R.F.1
  • 2
    • 0037574296 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.77.1413
    • A. Peres, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77.1413 77, 1413 (1996).
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 1413
    • Peres, A.1
  • 4
    • 43049119068 scopus 로고    scopus 로고
    • arXiv:quant-ph/9609016.
    • e-print arXiv:quant-ph/9609016.
  • 8
    • 0037033316 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.88.017901
    • H. Ollivier and W. H. Zurek, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.017901 88, 017901 (2001).
    • (2001) Phys. Rev. Lett. , vol.88 , pp. 017901
    • Ollivier, H.1    Zurek, W.H.2
  • 15
    • 0004163930 scopus 로고    scopus 로고
    • 3rd ed. (Elsevier, Amsterdam
    • M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, Amsterdam, 2004).
    • (2004) Random Matrices
    • Mehta, M.L.1
  • 17
    • 0036509287 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.65.032314
    • G. Vidal and R. F. Werner, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.032314 65, 032314 (2002).
    • (2002) Phys. Rev. A , vol.65 , pp. 032314
    • Vidal, G.1    Werner, R.F.2
  • 18
    • 0042542909 scopus 로고    scopus 로고
    • PYLAAG 0375-9601 10.1016/S0375-9601(97)00416-7
    • P. Horodecki, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(97)00416- 7 232, 333 (1997).
    • (1997) Phys. Lett. A , vol.232 , pp. 333
    • Horodecki, P.1
  • 19
    • 40849118313 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.100.090502
    • M. Piani, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.090502 100, 090502 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 090502
    • Piani, M.1    Horodecki, P.2    Horodecki, R.3
  • 21
    • 43049147379 scopus 로고    scopus 로고
    • The zero-way setting of CLOCC is as follows: there are two parties allowed to communicate under CLOCC only after local complete dephasing possibly subsequent to local unitary operations. In general, the quantum deficit is equal to minΛ CLOCC [SvN (ρ Alice ′) + SvN (ρ Bob ′)] - SvN (ρ [A,B]) with ρ′ =Λ (ρ [A,B]). In case of zero-way CLOCC, the minimum is obtained for the case where Alice or Bob has ρ′ totally and the other person has a null system. Then the zero-way case quantum deficit is equal to minΛ zero-wayCLOCC SvN (ρ′) - SvN (ρ [A,B]). This is equal to D for the bipartite case.
    • The zero-way setting of CLOCC is as follows: there are two parties allowed to communicate under CLOCC only after local complete dephasing possibly subsequent to local unitary operations. In general, the quantum deficit is equal to minΛ CLOCC [SvN (ρ Alice ′) + SvN (ρ Bob ′)] - SvN (ρ [A,B]) with ρ′ =Λ (ρ [A,B]). In case of zero-way CLOCC, the minimum is obtained for the case where Alice or Bob has ρ′ totally and the other person has a null system. Then the zero-way case quantum deficit is equal to minΛ zero-wayCLOCC SvN (ρ′) - SvN (ρ [A,B]). This is equal to D for the bipartite case.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.