-
1
-
-
0003958744
-
-
Springer, Berlin
-
Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (1988), Springer, Berlin
-
(1988)
Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
2
-
-
33747875704
-
-
Springer, Berlin
-
Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. Spectral Methods: Fundamentals in Single Domains (2006), Springer, Berlin
-
(2006)
Spectral Methods: Fundamentals in Single Domains
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
3
-
-
43049133098
-
-
R.J. Chiffell, On the wave behavior and rate effect of thermal and thermo-mechanical waves, M.Sc. Thesis, University of New Mexico, Albuquerque, 1994.
-
R.J. Chiffell, On the wave behavior and rate effect of thermal and thermo-mechanical waves, M.Sc. Thesis, University of New Mexico, Albuquerque, 1994.
-
-
-
-
4
-
-
0042234530
-
A finite difference method for solving the heat transport equation at the microscale
-
Dai W., and Nassar R. A finite difference method for solving the heat transport equation at the microscale. Numer. Methods Partial Differential Equations 15 6 (1999) 697-708
-
(1999)
Numer. Methods Partial Differential Equations
, vol.15
, Issue.6
, pp. 697-708
-
-
Dai, W.1
Nassar, R.2
-
5
-
-
0001295744
-
A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film
-
Dai W., and Nassar R. A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film. Numer. Methods Partial Differential Equations 16 5 (2000) 441-458
-
(2000)
Numer. Methods Partial Differential Equations
, vol.16
, Issue.5
, pp. 441-458
-
-
Dai, W.1
Nassar, R.2
-
6
-
-
0035879146
-
A compact finite difference scheme for solving a one-dimensional heat transport equation at the microscale
-
Dai W., and Nassar R. A compact finite difference scheme for solving a one-dimensional heat transport equation at the microscale. J. Comput. Appl. Math. 132 2 (2001) 431-441
-
(2001)
J. Comput. Appl. Math.
, vol.132
, Issue.2
, pp. 431-441
-
-
Dai, W.1
Nassar, R.2
-
7
-
-
0035068667
-
A finite difference scheme for solving a three-dimensional heat transport equation in a thin film with microscale thickness
-
Dai W., and Nassar R. A finite difference scheme for solving a three-dimensional heat transport equation in a thin film with microscale thickness. Internat. J. Numer. Methods Engrg. 50 7 (2001) 1665-1680
-
(2001)
Internat. J. Numer. Methods Engrg.
, vol.50
, Issue.7
, pp. 1665-1680
-
-
Dai, W.1
Nassar, R.2
-
8
-
-
0742319155
-
An unconditionally stable hybrid FE-FD scheme for solving a 3D heat transport equation in a cylindrical thin film with sub-microscale thickness
-
Dai W., and Nassar R. An unconditionally stable hybrid FE-FD scheme for solving a 3D heat transport equation in a cylindrical thin film with sub-microscale thickness. J. Comput. Appl. Math. 21 5 (2003) 555-568
-
(2003)
J. Comput. Appl. Math.
, vol.21
, Issue.5
, pp. 555-568
-
-
Dai, W.1
Nassar, R.2
-
11
-
-
0001947695
-
Improvements in spectral collocation discretization through a multiple domain technique
-
Macaraeg M.G., and Streett G.L. Improvements in spectral collocation discretization through a multiple domain technique. Appl. Numer. Math. 2 (1986) 95-108
-
(1986)
Appl. Numer. Math.
, vol.2
, pp. 95-108
-
-
Macaraeg, M.G.1
Streett, G.L.2
-
12
-
-
21844490120
-
Pseudospectral collocation methods for fourth-order differential equations
-
Malek A., and Phillips T.N. Pseudospectral collocation methods for fourth-order differential equations. IMA J. Numer. Anal. 15 (1995) 523-553
-
(1995)
IMA J. Numer. Anal.
, vol.15
, pp. 523-553
-
-
Malek, A.1
Phillips, T.N.2
-
13
-
-
2142758205
-
Viscoelastic flow in an undulating tube using spectral methods
-
Momeni-Masuleh S.H., and Phillips T.N. Viscoelastic flow in an undulating tube using spectral methods. Comput. Fluids 33 (2004) 1075-1095
-
(2004)
Comput. Fluids
, vol.33
, pp. 1075-1095
-
-
Momeni-Masuleh, S.H.1
Phillips, T.N.2
-
14
-
-
0028039735
-
On the wave theory in heat conduction
-
Özisik M.N., and Tzou D.Y. On the wave theory in heat conduction. ASME J. Heat Transfer. 116 (1994) 526-536
-
(1994)
ASME J. Heat Transfer.
, vol.116
, pp. 526-536
-
-
Özisik, M.N.1
Tzou, D.Y.2
-
16
-
-
85014333979
-
Heat transfer mechanisms during short-pulse laser heating on metals
-
Qui T.Q., and Tien C.L. Heat transfer mechanisms during short-pulse laser heating on metals. ASME J. Heat Transfer 115 (1993) 835-841
-
(1993)
ASME J. Heat Transfer
, vol.115
, pp. 835-841
-
-
Qui, T.Q.1
Tien, C.L.2
-
17
-
-
9144264328
-
Navier-Stokes solution by new compact scheme for incompresible flows
-
Sengupta T.K., Guntaka A., and Dey S. Navier-Stokes solution by new compact scheme for incompresible flows. J. Sci. Comput. 21 3 (2004) 269-282
-
(2004)
J. Sci. Comput.
, vol.21
, Issue.3
, pp. 269-282
-
-
Sengupta, T.K.1
Guntaka, A.2
Dey, S.3
-
21
-
-
0035508195
-
High accuracy stable numerical solution of 1D microscale heat transport equation
-
Zhang J., and Zhao J.J. High accuracy stable numerical solution of 1D microscale heat transport equation. Comm. Numer. Methods Eng. 17 11 (2001) 821-832
-
(2001)
Comm. Numer. Methods Eng.
, vol.17
, Issue.11
, pp. 821-832
-
-
Zhang, J.1
Zhao, J.J.2
-
22
-
-
0034849267
-
Iterative solution and finite difference approximations to 3D microscale heat transport equation
-
Zhang J., and Zhao J.J. Iterative solution and finite difference approximations to 3D microscale heat transport equation. Math. Comput. Simulation 57 6 (2001) 387-404
-
(2001)
Math. Comput. Simulation
, vol.57
, Issue.6
, pp. 387-404
-
-
Zhang, J.1
Zhao, J.J.2
-
23
-
-
0000563677
-
Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation
-
Zhang J., and Zhao J.J. Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation. J. Comput. Phys. 170 1 (2001) 261-275
-
(2001)
J. Comput. Phys.
, vol.170
, Issue.1
, pp. 261-275
-
-
Zhang, J.1
Zhao, J.J.2
|