-
1
-
-
0014747280
-
-
0018-9464 10.1109/TMAG.1970.1066714.
-
A. J. Mager, IEEE Trans. Magn. 0018-9464 10.1109/TMAG.1970.1066714 6, 67 (1970).
-
(1970)
IEEE Trans. Magn.
, vol.6
, pp. 67
-
-
Mager, A.J.1
-
2
-
-
18744406353
-
-
0031-9007 10.1103/PhysRevLett.89.130801.
-
J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.89.130801 89, 130801 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 130801
-
-
Allred, J.C.1
Lyman, R.N.2
Kornack, T.W.3
Romalis, M.V.4
-
4
-
-
0005841306
-
-
0018-9464 10.1109/TMAG.1987.1065127.
-
J. R. Clem, IEEE Trans. Magn. 0018-9464 10.1109/TMAG.1987.1065127 23, 1093 (1987).
-
(1987)
IEEE Trans. Magn.
, vol.23
, pp. 1093
-
-
Clem, J.R.1
-
5
-
-
23944502606
-
-
1434-6060 10.1140/epjd/e2005-00188-3.
-
C. Henkel, Eur. Phys. J. D 1434-6060 10.1140/epjd/e2005-00188-3 35, 59 (2005).
-
(2005)
Eur. Phys. J. D
, vol.35
, pp. 59
-
-
Henkel, C.1
-
7
-
-
27144451540
-
-
1050-2947 10.1103/PhysRevA.72.012506.
-
C. T. Munger, Jr., Phys. Rev. A 1050-2947 10.1103/PhysRevA.72.012506 72, 012506 (2005).
-
(2005)
Phys. Rev. A
, vol.72
, pp. 012506
-
-
Munger Jr., C.T.1
-
8
-
-
43049120528
-
-
Atomic Physics (Oxford U. P., Oxford), Cha.
-
D. Budker, D. Kimball, and D. DeMille, Atomic Physics (Oxford U. P., Oxford, 2004), Chap..
-
(2004)
-
-
Budker, D.1
Kimball, D.2
Demille, D.3
-
9
-
-
0041443387
-
-
0021-8979 10.1063/1.366753.
-
B. J. Roth, J. Appl. Phys. 0021-8979 10.1063/1.366753 83, 635 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 635
-
-
Roth, B.J.1
-
10
-
-
36149028105
-
-
0031-899X 10.1103/PhysRev.83.34.
-
H. B. Callen and T. A. Welton, Phys. Rev. 0031-899X 10.1103/PhysRev.83.34 83, 34 (1951).
-
(1951)
Phys. Rev.
, vol.83
, pp. 34
-
-
Callen, H.B.1
Welton, T.A.2
-
11
-
-
33646794968
-
-
0018-9219 10.1109/JPROC.2003.811796.
-
J. A. Sidles, J. L. Garbini, W. M. Dougherty, and S. -H. Chao, Proc. IEEE 0018-9219 10.1109/JPROC.2003.811796 91, 799 (2003).
-
(2003)
Proc. IEEE
, vol.91
, pp. 799
-
-
Sidles, J.A.1
Garbini, J.L.2
Dougherty, W.M.3
Chao, S.-H.4
-
12
-
-
2942571837
-
-
0021-8979 10.1063/1.353732.
-
G. Durin, P. Falferi, M. Cerdonio, G. A. Prodi, and S. Vitale, J. Appl. Phys. 0021-8979 10.1063/1.353732 73, 5363 (1993).
-
(1993)
J. Appl. Phys.
, vol.73
, pp. 5363
-
-
Durin, G.1
Falferi, P.2
Cerdonio, M.3
Prodi, G.A.4
Vitale, S.5
-
13
-
-
34249895530
-
-
0003-6951 10.1063/1.2737357.
-
T. W. Kornack, S. J. Smullin, S. -K. Lee, and M. V. Romalis, Appl. Phys. Lett. 0003-6951 10.1063/1.2737357 90, 223501 (2007).
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 223501
-
-
Kornack, T.W.1
Smullin, S.J.2
Lee, S.-K.3
Romalis, M.V.4
-
14
-
-
2342569086
-
-
0018-9464
-
D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, IEEE Trans. Magn. 40, 1318 (2004). 0018-9464
-
(2004)
IEEE Trans. Magn.
, vol.40
, pp. 1318
-
-
Lin, D.1
Zhou, P.2
Fu, W.N.3
Badics, Z.4
Cendes, Z.J.5
-
15
-
-
43049100992
-
-
For low-conductivity soft ferromagnets, so-called excess or residual loss often dominates eddy current loss calculated with static bulk conductivity. In such cases we assume that the effect is included in an appropriately redefined = (f).
-
For low-conductivity soft ferromagnets, so-called excess or residual loss often dominates eddy current loss calculated with static bulk conductivity. In such cases we assume that the effect is included in an appropriately redefined = (f).
-
-
-
-
17
-
-
43049145726
-
-
This comes from the fact that for a given shield size and shape, the reluctance of the portion of the magnetic circuit that goes through the shield scales with the thickness and the permeability as Rmagn 1/ (μr t). Therefore qualitative distribution of field lines around the shield should not change as μr and t vary while keeping their product constant. The other length scale relevant to the problem is a, which leads to the dimensionless parameter specified.
-
This comes from the fact that for a given shield size and shape, the reluctance of the portion of the magnetic circuit that goes through the shield scales with the thickness and the permeability as Rmagn 1/ (μr t). Therefore qualitative distribution of field lines around the shield should not change as μr and t vary while keeping their product constant. The other length scale relevant to the problem is a, which leads to the dimensionless parameter specified.
-
-
-
-
18
-
-
43049100630
-
-
Obviously this does not hold at the corners of a closed cylindrical shield. However, numerical finite-element calculations in Appendix indicate that errors in noise due to these localized points are at most on the order of 1%.
-
Obviously this does not hold at the corners of a closed cylindrical shield. However, numerical finite-element calculations in Appendix indicate that errors in noise due to these localized points are at most on the order of 1%.
-
-
-
-
19
-
-
43049111293
-
-
Static and Dynamic Electricity (McGraw-Hill, New York)
-
W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968), pp. 188-190.
-
(1968)
, pp. 188-190
-
-
Smythe, W.R.1
-
20
-
-
43049124293
-
-
The integrand diverges at x′ =1/2, but the integral converges when the upper limit of integral approaches 1/2 from below.
-
The integrand diverges at x′ =1/2, but the integral converges when the upper limit of integral approaches 1/2 from below.
-
-
-
-
21
-
-
43049099886
-
-
in Biomagnetism '87, edited by K. Atsumi, M. Kotani, S. Ueno, T. Katila, and S. J. Williamson (Denki U. P., Tokyo),.
-
J. Nenonen and T. Katila, in Biomagnetism '87, edited by, K. Atsumi, M. Kotani, S. Ueno, T. Katila, and, S. J. Williamson, (Denki U. P., Tokyo, 1988), p. 426.
-
(1988)
, pp. 426
-
-
Nenonen, J.1
Katila, T.2
-
22
-
-
43049095944
-
-
See their Eq. (45) and an expression in the following paragraph.
-
See their Eq. (45) and an expression in the following paragraph.
-
-
-
-
23
-
-
43049134708
-
-
See their Eq. (5) in the case dt.
-
See their Eq. (5) in the case dt.
-
-
-
-
24
-
-
43049106720
-
-
This is the case after correcting the definition of 2 by multiplying it with z2 in order to render it dimensionless as claimed.
-
This is the case after correcting the definition of 2 by multiplying it with z2 in order to render it dimensionless as claimed.
-
-
-
|