-
1
-
-
33644536089
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.73.025106
-
G. Pruessner and O. Peters, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.73.025106 73, 025106 (R) (2006).
-
(2006)
Phys. Rev. e
, vol.73
, pp. 025106
-
-
Pruessner, G.1
Peters, O.2
-
2
-
-
0034349202
-
-
BJPHE6 0103-9733
-
R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zapperi, Braz. J. Phys. BJPHE6 0103-9733 30, 27 (2000).
-
(2000)
Braz. J. Phys.
, vol.30
, pp. 27
-
-
Dickman, R.1
Muñoz, M.A.2
Vespignani, A.3
Zapperi, S.4
-
3
-
-
42949110651
-
-
PLEEE8 1063-651X
-
M. J. Alava, L. Laurson, A. Vespignani, and S. Zapperi, preceding paper, Phys. Rev. E PLEEE8 1063-651X 77, 048101 (2008).
-
(2008)
Phys. Rev. e
, vol.77
, pp. 048101
-
-
Alava, M.J.1
Laurson, L.2
Vespignani, A.3
Zapperi, S.4
-
4
-
-
26644444101
-
-
CTPHDI 0253-6102
-
G.-J. Pan, D.-M. Zhang, H.-Z. Sun, and Y.-P. Yin, Commun. Theor. Phys. CTPHDI 0253-6102 44, 483 (2005).
-
(2005)
Commun. Theor. Phys.
, vol.44
, pp. 483
-
-
Pan, G.-J.1
Zhang, D.-M.2
Sun, H.-Z.3
Yin, Y.-P.4
-
5
-
-
41349109503
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.70.067101
-
K. Christensen, N. R. Moloney, O. Peters, and G. Pruessner, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.70.067101 70, 067101 (2004).
-
(2004)
Phys. Rev. e
, vol.70
, pp. 067101
-
-
Christensen, K.1
Moloney, N.R.2
Peters, O.3
Pruessner, G.4
-
6
-
-
4243607649
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.59.4169
-
A. Malthe-Sørenssen, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.59.4169 59, 4169 (1999).
-
(1999)
Phys. Rev. e
, vol.59
, pp. 4169
-
-
Malthe-Sørenssen, A.1
-
7
-
-
0001040381
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.77.111
-
M. Paczuski and S. Boettcher, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.77.111 77, 111 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 111
-
-
Paczuski, M.1
Boettcher, S.2
-
8
-
-
45849155417
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.67.030301
-
G. Pruessner, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.67.030301 67, 030301 (R) (2003).
-
(2003)
Phys. Rev. e
, vol.67
, pp. 030301
-
-
Pruessner, G.1
-
9
-
-
1842580247
-
-
edited by E. Korutcheva and R. Cuerno (Nova Science Publishers, New York
-
M. Alava, in Advances in Condensed Matter and Statistical Physics, edited by, E. Korutcheva, and, R. Cuerno, (Nova Science Publishers, New York, 2004).
-
(2004)
Advances in Condensed Matter and Statistical Physics
-
-
Alava, M.1
-
10
-
-
42949158539
-
-
As long as the model is conservative, individual particles effectively perform a random walk and the first moment of the avalanche size is a function of the spatial distribution of the driving. For example, if a one-dimensional model is driven at site x0 with two open boundaries, then the first moment is (L+1- x0) x0, where L is the system size. By changing x0 as a power law of L, the exponent γ1 changes accordingly. For example, x0 =L produces γ1 =3/2.
-
As long as the model is conservative, individual particles effectively perform a random walk and the first moment of the avalanche size is a function of the spatial distribution of the driving. For example, if a one-dimensional model is driven at site x0 with two open boundaries, then the first moment is (L+1- x0) x0, where L is the system size. By changing x0 as a power law of L, the exponent γ1 changes accordingly. For example, x0 =L produces γ1 =3/2.
-
-
-
|