메뉴 건너뛰기




Volumn 67, Issue 6 2, 2003, Pages

Semiclassical trace formulas for noninteracting identical particles

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC STABILITY; CONVOLUTION; EIGENVALUES AND EIGENFUNCTIONS; ELECTRONIC DENSITY OF STATES; FERMIONS; FOURIER TRANSFORMS; GREEN'S FUNCTION; HAMILTONIANS; NUMERICAL METHODS; PHASE SPACE METHODS; QUANTUM THEORY;

EID: 42749104991     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (73)
  • 13
    • 33645080031 scopus 로고
    • focus issue on periodic orbit theory in classical and quantum mechanics, edited by P. Cvitanović
    • Chaos 2, (1992), focus issue on periodic orbit theory in classical and quantum mechanics, edited by P. Cvitanović.
    • (1992) Chaos , vol.2
  • 36
    • 0003870238 scopus 로고    scopus 로고
    • edited by S. Tomsovic (World Scientific, Singapore)
    • Tunneling in Complex Systems, edited by S. Tomsovic (World Scientific, Singapore, 1998).
    • (1998) Tunneling in Complex Systems
  • 38
    • 0039123939 scopus 로고    scopus 로고
    • edited by I.V. Lerner, J.P. Keating, and D.E. Khmelnitskii (Plenum Press, New York)
    • Supersymmetry and Trace Formulae: Chaos and Disorder, edited by I.V. Lerner, J.P. Keating, and D.E. Khmelnitskii (Plenum Press, New York, 1999).
    • (1999) Supersymmetry and Trace Formulae: Chaos and Disorder
  • 72
    • 33645074278 scopus 로고    scopus 로고
    • note
    • The division of N of the energy argument simply states that the total energy must be evenly divided among all of the particles. The set of orbits corresponding to this cycle is clearly the same as the set of orbits of the one-particle dynamics (almost by definition) and the amplitudes and actions are the same as the one-particle case since the N particles collectively execute one complete motion (or a multiple repetition) of the periodic orbit. This is observed for N=3 in Sec. V B.
  • 73
    • 33645075834 scopus 로고    scopus 로고
    • note
    • 1/2 ∈ (0,0,1) and Î denotes the identity operator.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.