-
15
-
-
33645082369
-
-
Rutherford Appleton Laboratory Report No. RAL-88-028; (unpublished)
-
R. D. Williams, Rutherford Appleton Laboratory Report No. RAL-88-028, 1985 (unpublished).
-
(1985)
-
-
Williams, R.D.1
-
17
-
-
0026173888
-
-
S. Itou, K. Tozaki, and N. Komatsu, Jpn. J. Appl. Phys., Part 1 30, 1230 (1991).
-
(1991)
Jpn. J. Appl. Phys., Part 1
, vol.30
, pp. 1230
-
-
Itou, S.1
Tozaki, K.2
Komatsu, N.3
-
21
-
-
0022080767
-
-
A. J. Hurd, S. Fraden, F. Lonberg, and R. B. Meyer, J. Phys. (Paris) 46, 905 (1985).
-
(1985)
J. Phys. (Paris)
, vol.46
, pp. 905
-
-
Hurd, A.J.1
Fraden, S.2
Lonberg, F.3
Meyer, R.B.4
-
22
-
-
0003018047
-
-
S. Fraden, A. J. Hurd, R. B. Meyer, M. Cahoon, and D. L. D. Casper, J. Phys. (Paris), Colloq. 46, C3-85 (1985).
-
(1985)
J. Phys. (Paris), Colloq.
, vol.46
-
-
Fraden, S.1
Hurd, A.J.2
Meyer, R.B.3
Cahoon, M.4
Casper, D.L.D.5
-
28
-
-
0000440223
-
-
note
-
One simply balances an elastic distortion energy against a surface anchoring energy [13]. See also Sec. III. By a similar argument one find that for droplets with a preference for homeotropic anchoring attain a homogeneous director field if sufficiently small. J. H. Erdmann, S. Zumer. and J. W. Doane, Phys. Rev. Lett. 64, 1907 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 1907
-
-
Erdmann, J.H.1
Zumer, S.2
Doane, J.W.3
-
38
-
-
33645085464
-
-
note
-
We also investigated bipolar parabolas of revolution and found the free-energy diffrence between these and circle sections of revolutionto be under 1% for all droplet volumes. For this reason, we do not discuss parabolas of revolution and take the circle section of revolution as representative for the class of elongated, pointed droplets.
-
-
-
-
39
-
-
23044531934
-
-
note
-
After submission of the manuscript our attention was drawn on a paper by A. V. Kaznacheev, M. M. Bogdanov, and S. A. Taraskin, JETP 95, 57 (2002). Their study focuses on the shape of bipolar nematic droplets larger than ≈20 μm, away from the crossover region.
-
(2002)
JETP
, vol.95
, pp. 57
-
-
Kaznacheev, A.V.1
Bogdanov, M.M.2
Taraskin, S.A.3
-
44
-
-
33645074307
-
-
note
-
We only explicitly consider spherical and elongated shapes, not toroidal or flat ones as these are (within our assumptions) structures of higher energy, where we note that oblate spheroid and lens-shaped droplets can become stable if - 1<ω<0 [8,15,30,37].
-
-
-
-
47
-
-
0036326668
-
-
O. Francescangeli, C. Ferrero, L. Lucchetti, F. Simoni, and M. Burghammer, Europhys. Lett. 59, 218 (2002).
-
(2002)
Europhys. Lett.
, vol.59
, pp. 218
-
-
Francescangeli, O.1
Ferrero, C.2
Lucchetti, L.3
Simoni, F.4
Burghammer, M.5
-
48
-
-
33645087816
-
-
(unpublished)
-
Z. Dogic (unpublished).
-
-
-
Dogic, Z.1
-
49
-
-
33645074830
-
-
note
-
The accuracy of our theory should deteriorate when the droplets become of the order of the size of the nematogens, which is about 1 μm for fd virus. A continuum description then loses its validity.
-
-
-
-
53
-
-
33645078281
-
-
(unpublished)
-
R. P. Sear (unpublished).
-
-
-
Sear, R.P.1
-
54
-
-
0027239179
-
-
R. J. Ondris-Crawford, G. P. Crawford, S. Zumer, and J. W. Doane, Phys. Rev. Lett. 70, 194 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 194
-
-
Ondris-Crawford, R.J.1
Crawford, G.P.2
Zumer, S.3
Doane, J.W.4
|