-
1
-
-
33644862175
-
Numerical simulation of Camassa–Holm peakons by adaptive upwinding
-
Robert Artebrant Hans Joachim Schroll Numerical simulation of Camassa–Holm peakons by adaptive upwinding Appl. Numer. Math. 56 5 2006 695 711
-
(2006)
Appl. Numer. Math.
, vol.56
, Issue.5
, pp. 695-711
-
-
Artebrant, Robert1
Schroll, Hans Joachim2
-
2
-
-
33846878957
-
Global conservative solutions of the Camassa–Holm equation
-
Alberto Bressan Adrian Constantin Global conservative solutions of the Camassa–Holm equation Arch. Ration. Mech. Anal. 183 2 2007 215 239
-
(2007)
Arch. Ration. Mech. Anal.
, vol.183
, Issue.2
, pp. 215-239
-
-
Bressan, Alberto1
Constantin, Adrian2
-
3
-
-
0042137401
-
Multi-symplectic structures and wave propagation
-
Thomas J. Bridges Multi-symplectic structures and wave propagation Math. Proc. Cambridge Philos. Soc. 121 1 1997 147 190
-
(1997)
Math. Proc. Cambridge Philos. Soc.
, vol.121
, Issue.1
, pp. 147-190
-
-
Bridges, Thomas J.1
-
4
-
-
0037832748
-
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
Thomas J. Bridges Sebastian Reich Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 4–5 2001 184 193
-
(2001)
Phys. Lett. A
, vol.284
, Issue.4–5
, pp. 184-193
-
-
Bridges, Thomas J.1
Reich, Sebastian2
-
5
-
-
85190074258
-
-
Paul F. Byrd, Morris D. Friedman, Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, Band 67, Second ed., Springer-Verlag, New York, 1971, revised.
-
-
-
-
6
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
Roberto Camassa Darryl D. Holm An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 11 1993 1661 1664
-
(1993)
Phys. Rev. Lett.
, vol.71
, Issue.11
, pp. 1661-1664
-
-
Camassa, Roberto1
Holm, Darryl D.2
-
8
-
-
30444460126
-
On a completely integrable numerical scheme for a nonlinear shallow-water wave equation
-
Roberto Camassa Jingfang Huang Long Lee On a completely integrable numerical scheme for a nonlinear shallow-water wave equation J. Nonlinear Math. Phys. 12 Suppl. 1 2005 146 162
-
(2005)
J. Nonlinear Math. Phys.
, vol.12
, Issue.Suppl. 1
, pp. 146-162
-
-
Camassa, Roberto1
Huang, Jingfang2
Lee, Long3
-
9
-
-
33646924886
-
Integral and integrable algorithms for a nonlinear shallow-water wave equation
-
Roberto Camassa Jingfang Huang Long Lee Integral and integrable algorithms for a nonlinear shallow-water wave equation J. Comput. Phys. 216 2 2006 547 572
-
(2006)
J. Comput. Phys.
, vol.216
, Issue.2
, pp. 547-572
-
-
Camassa, Roberto1
Huang, Jingfang2
Lee, Long3
-
10
-
-
85190071582
-
-
-
-
-
13
-
-
0000985293
-
Wave breaking for nonlinear nonlocal shallow water equations
-
Adrian Constantin Joachim Escher Wave breaking for nonlinear nonlocal shallow water equations Acta Math. 181 2 1998 229 243
-
(1998)
Acta Math.
, vol.181
, Issue.2
, pp. 229-243
-
-
Constantin, Adrian1
Escher, Joachim2
-
14
-
-
0032374820
-
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
-
Adrian Constantin Joachim Escher Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation Comm. Pure Appl. Math. 51 5 1998 475 504
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.5
, pp. 475-504
-
-
Constantin, Adrian1
Escher, Joachim2
-
15
-
-
0035622111
-
Least action principle for an integrable shallow water equation
-
Adrian Constantin Boris Kolev Least action principle for an integrable shallow water equation J. Nonlinear Math. Phys. 8 4 2001 471 474
-
(2001)
J. Nonlinear Math. Phys.
, vol.8
, Issue.4
, pp. 471-474
-
-
Constantin, Adrian1
Kolev, Boris2
-
16
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Adrian Constantin Boris Kolev Geodesic flow on the diffeomorphism group of the circle Comment. Math. Helv. 78 4 2003 787 804
-
(2003)
Comment. Math. Helv.
, vol.78
, Issue.4
, pp. 787-804
-
-
Constantin, Adrian1
Kolev, Boris2
-
17
-
-
0034349440
-
Global weak solutions for a shallow water equation
-
Adrian Constantin Luc Molinet Global weak solutions for a shallow water equation Comm. Math. Phys. 211 1 2000 45 61
-
(2000)
Comm. Math. Phys.
, vol.211
, Issue.1
, pp. 45-61
-
-
Constantin, Adrian1
Molinet, Luc2
-
18
-
-
85190085421
-
-
Colin J. Cotter, Darryl D. Holm, Peter E. Hydon, Multisymplectic formulation of fluid dynamics using the inverse map, Preprint, 2007.
-
-
-
-
19
-
-
0001500560
-
The Camassa-Holm equation: conserved quantities and the initial value problem
-
Michael Fischer Jeremy Schiff The Camassa-Holm equation: conserved quantities and the initial value problem Phys. Let. A 259 5 1999 371 376
-
(1999)
Phys. Let. A
, vol.259
, Issue.5
, pp. 371-376
-
-
Fischer, Michael1
Schiff, Jeremy2
-
20
-
-
22244482803
-
Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation
-
Benno Fuchssteiner Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation Phys. D 95 3–4 1996 229 243
-
(1996)
Phys. D
, vol.95
, Issue.3–4
, pp. 229-243
-
-
Fuchssteiner, Benno1
-
21
-
-
49049150360
-
Symplectic structures, their Bäcklund transformations and hereditary symmetries
-
Benno Fuchssteiner Athanassios S. Fokas Symplectic structures, their Bäcklund transformations and hereditary symmetries Phys. D 4 1 1981/82 47 66
-
(1981)
Phys. D
, vol.4
, Issue.1
, pp. 47-66
-
-
Fuchssteiner, Benno1
Fokas, Athanassios S.2
-
22
-
-
34447276776
-
Convergence of a finite difference scheme for the Camassa–Holm equation
-
Helge Holden Xavier Raynaud Convergence of a finite difference scheme for the Camassa–Holm equation SIAM J. Numer. Anal. 44 4 2006 1655 1680 (Electronic)
-
(2006)
SIAM J. Numer. Anal.
, vol.44
, Issue.4
, pp. 1655-1680
-
-
Holden, Helge1
Raynaud, Xavier2
-
23
-
-
33644554516
-
A convergent numerical scheme for the Camassa–Holm equation based on multipeakons
-
Helge Holden Xavier Raynaud A convergent numerical scheme for the Camassa–Holm equation based on multipeakons Discrete Contin. Dyn. Syst. 14 3 2006 505 523
-
(2006)
Discrete Contin. Dyn. Syst.
, vol.14
, Issue.3
, pp. 505-523
-
-
Holden, Helge1
Raynaud, Xavier2
-
24
-
-
35648988600
-
Global conservative solutions of the Camassa–Holm equation – a Lagrangian point of view
-
Helge Holden Xavier Raynaud Global conservative solutions of the Camassa–Holm equation – a Lagrangian point of view Comm. Partial Diff. Equat. 32 10 2006 1511 1549
-
(2006)
Comm. Partial Diff. Equat.
, vol.32
, Issue.10
, pp. 1511-1549
-
-
Holden, Helge1
Raynaud, Xavier2
-
25
-
-
34447287547
-
Global conservative multipeakon solutions of the Camassa–Holm equation
-
Helge Holden Xavier Raynaud Global conservative multipeakon solutions of the Camassa–Holm equation J. Hyperbol. Differ. Equat. 4 1 2007 39 63
-
(2007)
J. Hyperbol. Differ. Equat.
, vol.4
, Issue.1
, pp. 39-63
-
-
Holden, Helge1
Raynaud, Xavier2
-
26
-
-
42649125291
-
A numerical scheme based on multipeakons for conservative solutions of the Camassa–Holm equation
-
Helge Holden Xavier Raynaud A numerical scheme based on multipeakons for conservative solutions of the Camassa–Holm equation Hyperbolic Problems: Theory, Numerics, Applications 2008 Springer Berlin 873 881
-
(2008)
, pp. 873-881
-
-
Holden, Helge1
Raynaud, Xavier2
-
28
-
-
0037171407
-
Camassa–Holm, Korteweg-de Vries and related models for water waves
-
Robin S. Johnson Camassa–Holm, Korteweg-de Vries and related models for water waves J. Fluid Mech. 455 2002 63 82
-
(2002)
J. Fluid Mech.
, vol.455
, pp. 63-82
-
-
Johnson, Robin S.1
-
29
-
-
1042267877
-
Stability of solitary waves for a nonlinearly dispersive equation
-
Henrik Kalisch Stability of solitary waves for a nonlinearly dispersive equation Discr. Contin. Dyn. Syst. 10 3 2004 709 717
-
(2004)
Discr. Contin. Dyn. Syst.
, vol.10
, Issue.3
, pp. 709-717
-
-
Kalisch, Henrik1
-
30
-
-
13544277180
-
Numerical study of traveling-wave solutions for the Camassa–Holm equation
-
Henrik Kalisch Jonatan Lenells Numerical study of traveling-wave solutions for the Camassa–Holm equation Chaos Solit. Fract. 25 2 2005 287 298
-
(2005)
Chaos Solit. Fract.
, vol.25
, Issue.2
, pp. 287-298
-
-
Kalisch, Henrik1
Lenells, Jonatan2
-
31
-
-
0043124933
-
A variational approach to second-order multisymplectic field theory
-
Shinar Kouranbaeva Steve Shkoller A variational approach to second-order multisymplectic field theory J. Geom. Phys. 35 4 2000 333 366
-
(2000)
J. Geom. Phys.
, vol.35
, Issue.4
, pp. 333-366
-
-
Kouranbaeva, Shinar1
Shkoller, Steve2
-
32
-
-
0031535504
-
Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons
-
Yi. A. Li Peter J. Olver Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons Discr. Contin. Dynam. Syst. 3 3 1997 419 432
-
(1997)
Discr. Contin. Dynam. Syst.
, vol.3
, Issue.3
, pp. 419-432
-
-
Li, Yi. A.1
Olver, Peter J.2
-
33
-
-
0034688728
-
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation
-
Yi. A. Li Peter J. Olver Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation J. Differ. Equat. 162 1 2000 27 63
-
(2000)
J. Differ. Equat.
, vol.162
, Issue.1
, pp. 27-63
-
-
Li, Yi. A.1
Olver, Peter J.2
-
34
-
-
17044395583
-
About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy
-
Enrique Loubet About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy J. Nonlinear Math. Phys. 12 1 2005 135 143
-
(2005)
J. Nonlinear Math. Phys.
, vol.12
, Issue.1
, pp. 135-143
-
-
Loubet, Enrique1
-
35
-
-
0032476963
-
Multisymplectic geometry, variational integrators, and nonlinear PDEs
-
Jerrold E. Marsden George W. Patrick Steve Shkoller Multisymplectic geometry, variational integrators, and nonlinear PDEs Comm. Math. Phys. 199 2 1998 351 395
-
(1998)
Comm. Math. Phys.
, vol.199
, Issue.2
, pp. 351-395
-
-
Marsden, Jerrold E.1
Patrick, George W.2
Shkoller, Steve3
-
37
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
Brian Moore Sebastian Reich Backward error analysis for multi-symplectic integration methods Numer. Math. 95 4 2003 625 652
-
(2003)
Numer. Math.
, vol.95
, Issue.4
, pp. 625-652
-
-
Moore, Brian1
Reich, Sebastian2
-
38
-
-
0035479874
-
On the Cauchy problem for the Camassa–Holm equation
-
Guillermo Rodrı´guez-Blanco On the Cauchy problem for the Camassa–Holm equation Nonlinear Anal. 46 3, Ser. A: Theory Methods 2001 309 327
-
(2001)
Nonlinear Anal.
, vol.46
, Issue.3, Ser. A: Theory Methods
, pp. 309-327
-
-
Rodrı´guez-Blanco, Guillermo1
-
39
-
-
34247232101
-
Multisymplectic Euler box scheme for the KdV equation
-
Yu-Shun Wang Bin Wang Xin Chen Multisymplectic Euler box scheme for the KdV equation Chin. Phys. Lett. 24 2 2007 312 314
-
(2007)
Chin. Phys. Lett.
, vol.24
, Issue.2
, pp. 312-314
-
-
Wang, Yu-Shun1
Wang, Bin2
Chen, Xin3
-
40
-
-
85190083527
-
-
Yan Xu, Chi-Wang Shu, A local discontinuous Galerkin method for the Camassa–Holm equation, SIAM J. Numer. Anal., in press.
-
-
-
|