메뉴 건너뛰기




Volumn , Issue , 2006, Pages 270-276

A data complexity analysis on imbalanced datasets and an alternative imbalance recovering strategy

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; SEARCH ENGINES;

EID: 42549139271     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WI.2006.9     Document Type: Conference Paper
Times cited : (14)

References (18)
  • 1
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to unbalanced datasets
    • R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines to unbalanced datasets. In Lecture Notes in Computer Science, volume 3201, pages 39-50, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3201 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 2
    • 27144531570 scopus 로고    scopus 로고
    • study of the behavior of several methods for balancing machine learning training data
    • A, :20-29
    • Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl., 6(1):20-29, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Carolina Monard, M.3
  • 3
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and unbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
    • Nitesh V. Chawla. C4.5 and unbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In Workshop on Learning from Imbalanced Datasets (ICML'03), 2003.
    • (2003) Workshop on Learning from Imbalanced Datasets (ICML'03)
    • Chawla, N.V.1
  • 5
    • 33745787554 scopus 로고    scopus 로고
    • Using random forest to learn unbalanced data
    • Statistics Department, University of California at Berkeley
    • C. Chen, A. Liaw, and L. Breiman. Using random forest to learn unbalanced data. Technical Report Technical report 666, Statistics Department, University of California at Berkeley, 2004.
    • (2004) Technical Report Technical report , vol.666
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 7
    • 0242372103 scopus 로고    scopus 로고
    • Data Imbalance in Surveillance of Nosocomial Infections
    • Hugo Sax Gilles Cohen, Melanie Hilario and Stephane Hugonnet. Data Imbalance in Surveillance of Nosocomial Infections. In Lecture Notes in Computer Science, volume 2868, pages 109-117, 2003.
    • (2003) Lecture Notes in Computer Science , vol.2868 , pp. 109-117
    • Sax, H.1    Cohen, G.2    Hilario, M.3    Hugonnet, S.4
  • 8
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • 30-39
    • Hongyu Guo and Herna L. Viktor. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. SIGKDD Explor. Newsl., 6(1):30-39, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1
    • Guo, H.1    Viktor, H.L.2
  • 9
    • 0036083445 scopus 로고    scopus 로고
    • T.K. Ho. A Data Complexity Analysis of Comparative Advantages of Decision Forest Constructors. In Pattern Analysis and Applications, pages 102-112, 2002.
    • T.K. Ho. A Data Complexity Analysis of Comparative Advantages of Decision Forest Constructors. In Pattern Analysis and Applications, pages 102-112, 2002.
  • 10
    • 0000092441 scopus 로고    scopus 로고
    • The nonlinearity of pattern classifiers
    • A. Hoekstra and R. Duin. The nonlinearity of pattern classifiers. In Proc. of the 13th ICPR, pages 271-275, 1996.
    • (1996) Proc. of the 13th ICPR , pp. 271-275
    • Hoekstra, A.1    Duin, R.2
  • 11
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • 40-49
    • Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explor. Newsl., 6(1):40-49, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1
    • Jo, T.1    Japkowicz, N.2
  • 12
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of unbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin. Addressing the curse of unbalanced training sets: one-sided selection. In XIV International Conference on Machine Learning, pages 179-186, 1997.
    • (1997) XIV International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 15
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1): 1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 17
    • 42549149920 scopus 로고    scopus 로고
    • Sarah Zelikovitz and Haym Hirsh. Improving Short Text Classification Using Unlabeled Background Knowledge. In In Proceedings of the Seventeenth International Conference on Machine Learning, 2000.
    • Sarah Zelikovitz and Haym Hirsh. Improving Short Text Classification Using Unlabeled Background Knowledge. In In Proceedings of the Seventeenth International Conference on Machine Learning, 2000.
  • 18
    • 42549102453 scopus 로고    scopus 로고
    • Jianping Zhang and Inderjeet Mani. kNN Approach to Unbalanced Data Distributions: A Case Study involving Information Extraction. In Workshop on Learning from Imbalanced Datasets (ICML'03), 2003.
    • Jianping Zhang and Inderjeet Mani. kNN Approach to Unbalanced Data Distributions: A Case Study involving Information Extraction. In Workshop on Learning from Imbalanced Datasets (ICML'03), 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.