-
1
-
-
0032395453
-
The existence of absolutely continuous invariant measures is not a topological invariant for unimodal maps
-
3
-
Bruin, H.: The existence of absolutely continuous invariant measures is not a topological invariant for unimodal maps. Ergodic Theory Dyn. Syst. 18(3), 555-565 (1998)
-
(1998)
Ergodic Theory Dyn. Syst.
, vol.18
, pp. 555-565
-
-
Bruin, H.1
-
3
-
-
0030537370
-
Wild attractors exist
-
1
-
Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild attractors exist. Ann. Math. 143(1), 97-130 (1996)
-
(1996)
Ann. Math.
, vol.143
, pp. 97-130
-
-
Bruin, H.1
Keller, G.2
Nowicki, T.3
Van Strien, S.4
-
4
-
-
0242370750
-
Invariant measure exists without a growth condition
-
Bruin, H., Shen, W., van Strien, S.: Invariant measure exists without a growth condition. Commun. Math. Phys. 241, 287-306 (2003)
-
(2003)
Commun. Math. Phys.
, vol.241
, pp. 287-306
-
-
Bruin, H.1
Shen, W.2
Van Strien, S.3
-
5
-
-
27844517338
-
Existence of invariant measures for multimodal interval maps
-
Inst. Phys. Bristol
-
Bruin, H., van Strien, S.: Existence of invariant measures for multimodal interval maps. In: Global Analysis of Dynamical Systems, pp. 433-447. Inst. Phys., Bristol (2001)
-
(2001)
Global Analysis of Dynamical Systems
, pp. 433-447
-
-
Bruin, H.1
Van Strien, S.2
-
6
-
-
0002525106
-
Positive Liapunov exponents and absolutely continuity for maps of the interval
-
1
-
Collet, P., Eckmann, J.-P.: Positive Liapunov exponents and absolutely continuity for maps of the interval. Ergodic Theory Dyn. Syst. 3(1), 13-46 (1983)
-
(1983)
Ergodic Theory Dyn. Syst.
, vol.3
, pp. 13-46
-
-
Collet, P.1
Eckmann, J.-P.2
-
7
-
-
42449117847
-
-
Manuscript in preparation
-
Graczyk, J., Sands, D.: Manuscript in preparation
-
-
-
Graczyk, J.1
Sands, D.2
-
8
-
-
51249183577
-
Absolutely continuous measures for certain maps of an interval
-
Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Publ. Math., Inst. Hautes ́Etud. Sci. 53, 17-51 (1981)
-
(1981)
Publ. Math., Inst. Hautes ́etud. Sci.
, vol.53
, pp. 17-51
-
-
Misiurewicz, M.1
-
10
-
-
0040250957
-
2 multi-modal Collet-Eckmann maps without Schwarzian derivative assumptions
-
2
-
2 multi-modal Collet-Eckmann maps without Schwarzian derivative assumptions. Trans. Am. Math. Soc. 321(2), 793-810 (1990)
-
(1990)
Trans. Am. Math. Soc.
, vol.321
, pp. 793-810
-
-
Nowicki, T.1
Van Strien, S.2
-
11
-
-
0002046772
-
Invariant measures exist under a summability condition for unimodal maps
-
Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition for unimodal maps. Invent. Math. 105, 123-136 (1991)
-
(1991)
Invent. Math.
, vol.105
, pp. 123-136
-
-
Nowicki, T.1
Van Strien, S.2
-
12
-
-
33947196339
-
A connecting lemma for rational maps satisfying a no growth condition
-
2
-
Rivera-Letelier, J.: A connecting lemma for rational maps satisfying a no growth condition. Ergodic Theory Dyn. Syst. 27(2), 595-636 (2007)
-
(2007)
Ergodic Theory Dyn. Syst.
, vol.27
, pp. 595-636
-
-
Rivera-Letelier, J.1
-
13
-
-
10044223044
-
Real Bounds, ergodicity and negative Schwarzian for multimodal maps
-
4
-
van Strien, S., Vargas, E.: Real Bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17(4), 749-782 (2004)
-
(2004)
J. Am. Math. Soc.
, vol.17
, pp. 749-782
-
-
Van Strien, S.1
Vargas, E.2
|