메뉴 건너뛰기




Volumn 73, Issue , 2008, Pages 319-353

Case-based reasoning for image segmentation by watershed transformation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 42449139621     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-73180-1_11     Document Type: Article
Times cited : (22)

References (122)
  • 1
    • 0018729995 scopus 로고
    • A survey on image segmentation
    • K.S. Fu, J.K. Mui, A survey on image segmentation, Pattern Recognition, 13, 1, 3-16, 1981.
    • (1981) Pattern Recognition , vol.13 , Issue.1 , pp. 3-16
    • Fu, K.S.1    Mui, J.K.2
  • 3
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • N.R. Pal, S.K. Pal, A review on image segmentation techniques, Pattern Recognition, 26, 9, 1277-1294, 1993.
    • (1993) Pattern Recognition , vol.26 , Issue.9 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 5
    • 42449156200 scopus 로고    scopus 로고
    • L. Lucchese, S.K. Mitra, Color Image Segmentation: A State-of-the-Art Survey, Image Processing, Vision, and Pattern Recognition, Proc. of the Indian National Science Academy (INSA-A), New Delhi, India, 67 A, No. 2, 207-221, 2001.
    • L. Lucchese, S.K. Mitra, Color Image Segmentation: A State-of-the-Art Survey, "Image Processing, Vision, and Pattern Recognition," Proc. of the Indian National Science Academy (INSA-A), New Delhi, India, Vol. 67 A, No. 2, 207-221, 2001.
  • 6
    • 0035546355 scopus 로고    scopus 로고
    • Color image segmentation: Advances and prospects
    • H.D. Cheng, X.H. Jiang, Y. Sun, J.Wang, Color image segmentation: advances and prospects, Pattern Recognition, 34, 2259-2281, 2001.
    • (2001) Pattern Recognition , vol.34 , pp. 2259-2281
    • Cheng, H.D.1    Jiang, X.H.2    Sun, Y.3    Wang, J.4
  • 7
    • 84949938398 scopus 로고    scopus 로고
    • Yet Another Survey on Image Segmentation: Region and Boundary Information Integration
    • Proc. 7th ECCV, Springer
    • J. Freixenet, X. Muñoz, D. Raba, J. Martí, X. Cufí, Yet Another Survey on Image Segmentation: Region and Boundary Information Integration, Proc. 7th ECCV, LNCS 2352, Springer, 408-422, 2002.
    • (2002) LNCS , vol.2352 , pp. 408-422
    • Freixenet, J.1    Muñoz, X.2    Raba, D.3    Martí, J.4    Cufí, X.5
  • 9
    • 0037809152 scopus 로고
    • Grey-level thresholding of images using a correlation criterion
    • A.D. Brink, Grey-level thresholding of images using a correlation criterion, Pattern Recognition Letters, 9, 5, 335-341, 1989.
    • (1989) Pattern Recognition Letters , vol.9 , Issue.5 , pp. 335-341
    • Brink, A.D.1
  • 10
    • 0026076906 scopus 로고
    • Automatic threshold selection using histograms based on the count of 4-connected regions
    • H. Luijendijk, Automatic threshold selection using histograms based on the count of 4-connected regions, Pattern Recognition Letters, 12, 4, 219-228, 1991.
    • (1991) Pattern Recognition Letters , vol.12 , Issue.4 , pp. 219-228
    • Luijendijk, H.1
  • 11
    • 0026359020 scopus 로고
    • Automatic threshold selection from a histogram using the "exponential hull
    • R.J. Whatmough, Automatic threshold selection from a histogram using the "exponential hull", CVGIP: Graphical Models and Image Processing 53, 6, 592-600, 1991.
    • (1991) CVGIP: Graphical Models and Image Processing , vol.53 , Issue.6 , pp. 592-600
    • Whatmough, R.J.1
  • 12
    • 0027634579 scopus 로고
    • An efficient threshold-evaluation algorithm for image segmentation based on spatial graylevel co-occurrences
    • W.-N. Lie, An efficient threshold-evaluation algorithm for image segmentation based on spatial graylevel co-occurrences, Signal Processing, 33, 1, 121-126, 1993.
    • (1993) Signal Processing , vol.33 , Issue.1 , pp. 121-126
    • Lie, W.-N.1
  • 13
    • 0038667920 scopus 로고    scopus 로고
    • Threshold selection by clustering gray levels of boundary
    • L. Wang, J. Bai, Threshold selection by clustering gray levels of boundary Pattern Recognition Letters, 24, 12, 1983-1999, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1983-1999
    • Wang, L.1    Bai, J.2
  • 14
    • 0040355653 scopus 로고    scopus 로고
    • Adaptive document image binarization
    • J. Sauvola, M. Pietikainen, Adaptive document image binarization, Pattern Recognition, 33, 2, 225-236, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.2 , pp. 225-236
    • Sauvola, J.1    Pietikainen, M.2
  • 15
    • 2942726590 scopus 로고    scopus 로고
    • Determination of image bimodality thresholds for different intensity distributions
    • O. Demirkaya, M.H. Asyali, Determination of image bimodality thresholds for different intensity distributions, Signal Processing: Image Communication, 19, 6, 507-516, 2004.
    • (2004) Signal Processing: Image Communication , vol.19 , Issue.6 , pp. 507-516
    • Demirkaya, O.1    Asyali, M.H.2
  • 16
    • 33947307721 scopus 로고    scopus 로고
    • A novel generalization of the gray-scale histogram and its application to the automated visual measurement and inspection of wooden Pallets
    • in press
    • M.A. Patricio and D. Maravall, A novel generalization of the gray-scale histogram and its application to the automated visual measurement and inspection of wooden Pallets, Image and Vision Computing, 2006 (in press).
    • (2006) Image and Vision Computing
    • Patricio, M.A.1    Maravall, D.2
  • 17
    • 33748436213 scopus 로고    scopus 로고
    • Image binarization focusing on objects
    • S. Chen, D. Li, Image binarization focusing on objects, Neurocomputing, 69, 16-18, 2411-2415, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2411-2415
    • Chen, S.1    Li, D.2
  • 19
    • 0018383164 scopus 로고
    • Some experiments in image segmentation by clustering of local feature values
    • B.J. Schachter, L.S. Davis, A. Rosenfeld, Some experiments in image segmentation by clustering of local feature values, Pattern Recognition, 11, 1, 19-28, 1979.
    • (1979) Pattern Recognition , vol.11 , Issue.1 , pp. 19-28
    • Schachter, B.J.1    Davis, L.S.2    Rosenfeld, A.3
  • 20
    • 0025660330 scopus 로고
    • A color clustering technique for image segmentation
    • M. Celenk, A color clustering technique for image segmentation, Computer Vision, Graphics, and Image Processing, 52, 2, 145-170, 1990.
    • (1990) Computer Vision, Graphics, and Image Processing , vol.52 , Issue.2 , pp. 145-170
    • Celenk, M.1
  • 21
    • 0027275316 scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • J.C. Bezdek, L.A. Hall, L.P. Clarke, Review of MR image segmentation techniques using pattern recognition", Med. Phys., 20, 1033-1048, 1993.
    • (1993) Med. Phys , vol.20 , pp. 1033-1048
    • Bezdek, J.C.1    Hall, L.A.2    Clarke, L.P.3
  • 22
    • 0029305788 scopus 로고
    • Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement
    • P. Schroeter, J. Bigün, Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement, Pattern Recognition, 28, 5, 695-709, 1995.
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 695-709
    • Schroeter, P.1    Bigün, J.2
  • 24
    • 0031192645 scopus 로고    scopus 로고
    • An investigation of mountain method clustering for large data sets
    • R.P. Velthuizen, L.O. Hall, L.P. Clarke, M.L. Silbiger, An investigation of mountain method clustering for large data sets, Pattern Recognition, 30, 7, 1121-1135, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1121-1135
    • Velthuizen, R.P.1    Hall, L.O.2    Clarke, L.P.3    Silbiger, M.L.4
  • 25
    • 0032672717 scopus 로고    scopus 로고
    • Finding Salient Regions in Images: Nonparametric Clustering for Image Segmentation and Grouping
    • E.J. Pauwels, G. Frederix, Finding Salient Regions in Images: Nonparametric Clustering for Image Segmentation and Grouping, Computer Vision and Image Understanding, 75, 1-2, 73-85, 1999.
    • (1999) Computer Vision and Image Understanding , vol.75 , Issue.1-2 , pp. 73-85
    • Pauwels, E.J.1    Frederix, G.2
  • 26
    • 0032833597 scopus 로고    scopus 로고
    • Unsupervised segmentation of spaceborne passive radar images
    • K.B. Eom, Unsupervised segmentation of spaceborne passive radar images, Pattern Recognition Letters, 20, 5, 485-494, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.5 , pp. 485-494
    • Eom, K.B.1
  • 27
    • 14844346934 scopus 로고    scopus 로고
    • Advances in the segmentation of multi-component microanalytical images
    • J. Cutrona, N. Bonnet, M. Herbin, F. Hofer, Advances in the segmentation of multi-component microanalytical images, Ultramicroscopy, 103, 2, 141-152, 2005.
    • (2005) Ultramicroscopy , vol.103 , Issue.2 , pp. 141-152
    • Cutrona, J.1    Bonnet, N.2    Herbin, M.3    Hofer, F.4
  • 28
    • 33646103659 scopus 로고    scopus 로고
    • A clustering method based on multidimensional texture analysis
    • K. Hammouche, M. Diaf, J.-G. Postaire, A clustering method based on multidimensional texture analysis, Pattern Recognition, 39, 7, 1265-1277, 2006.
    • (2006) Pattern Recognition , vol.39 , Issue.7 , pp. 1265-1277
    • Hammouche, K.1    Diaf, M.2    Postaire, J.-G.3
  • 29
    • 33645400374 scopus 로고    scopus 로고
    • Segmentation of airborne laser scanning data using a slope adaptive neighborhood
    • S. Filin, N. Pfeifer, Segmentation of airborne laser scanning data using a slope adaptive neighborhood, ISPRS Journal of Photogrammetry and Remote Sensing, 60, 2, 71-80, 2006.
    • (2006) ISPRS Journal of Photogrammetry and Remote Sensing , vol.60 , Issue.2 , pp. 71-80
    • Filin, S.1    Pfeifer, N.2
  • 30
    • 0027839009 scopus 로고
    • A new approach to combining region growing and edge detection
    • J.-P. Gambotto, A new approach to combining region growing and edge detection, Pattern Recognition Letters, 14, 11, 869-875, 1993.
    • (1993) Pattern Recognition Letters , vol.14 , Issue.11 , pp. 869-875
    • Gambotto, J.-P.1
  • 31
    • 0028667908 scopus 로고
    • A systematic way for region-based image segmentation based on Markov Random Field model
    • Il Y. Kim, H. S. Yang, A systematic way for region-based image segmentation based on Markov Random Field model, Pattern Recognition Letters, 15, 10, 969-976, 1994.
    • (1994) Pattern Recognition Letters , vol.15 , Issue.10 , pp. 969-976
    • Kim, I.Y.1    Yang, H.S.2
  • 32
    • 0028400950 scopus 로고
    • Edge-Region-Based Segmentation of Range Images
    • M.A. Wani, B.G. Batchelor, Edge-Region-Based Segmentation of Range Images, IEEE Trans on PAMI, 16, 3, 314-319, 1994.
    • (1994) IEEE Trans on PAMI , vol.16 , Issue.3 , pp. 314-319
    • Wani, M.A.1    Batchelor, B.G.2
  • 33
    • 0030190142 scopus 로고    scopus 로고
    • The combination of edge detection and region extraction in nonparametric color image segmentation
    • N. Ito, R. Kamekura, Y. Shimazu, T. Yokoyama, Y. Matsushita, The combination of edge detection and region extraction in nonparametric color image segmentation, Information Sciences, 92, 1-4, 277-294, 1996.
    • (1996) Information Sciences , vol.92 , Issue.1-4 , pp. 277-294
    • Ito, N.1    Kamekura, R.2    Shimazu, Y.3    Yokoyama, T.4    Matsushita, Y.5
  • 35
    • 0035342029 scopus 로고    scopus 로고
    • A snake for CT image segmentation integrating region and edge information
    • X. M. Pardo, M.J. Carreira, A. Mosquera, D. Cabello, A snake for CT image segmentation integrating region and edge information, Image and Vision Computing, 19, 7, 461-475, 2001.
    • (2001) Image and Vision Computing , vol.19 , Issue.7 , pp. 461-475
    • Pardo, X.M.1    Carreira, M.J.2    Mosquera, A.3    Cabello, D.4
  • 36
    • 0036606420 scopus 로고    scopus 로고
    • Automatic image segmentation system through iterative edge-region co-operation
    • C.D. Kermad, K. Chehdi, Automatic image segmentation system through iterative edge-region co-operation, Image and Vision Computing, 20, 8, 541-555, 2002.
    • (2002) Image and Vision Computing , vol.20 , Issue.8 , pp. 541-555
    • Kermad, C.D.1    Chehdi, K.2
  • 37
    • 0037235942 scopus 로고    scopus 로고
    • Strategies for image segmentation combining region and boundary information
    • X. Muñoz, J. Freixenet, X. Cufí, J. Martí, Strategies for image segmentation combining region and boundary information, Pattern Recognition Letters, 24, 1-3, 375-392, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 375-392
    • Muñoz, X.1    Freixenet, J.2    Cufí, X.3    Martí, J.4
  • 38
    • 10744223883 scopus 로고    scopus 로고
    • Application of region-based segmentation and neural network edge detection to skin lesions
    • M.I. Rajab, M.S. Woolfson, S.P. Morgan, Application of region-based segmentation and neural network edge detection to skin lesions, Computerized Medical Imaging and Graphics, 28, 1-2, 61-68, 2004.
    • (2004) Computerized Medical Imaging and Graphics , vol.28 , Issue.1-2 , pp. 61-68
    • Rajab, M.I.1    Woolfson, M.S.2    Morgan, S.P.3
  • 39
    • 2642574101 scopus 로고    scopus 로고
    • Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery
    • M. Mueller, K. Segl, H. Kaufmann, Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery, Pattern Recognition, 37, 8, 1619-1628, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.8 , pp. 1619-1628
    • Mueller, M.1    Segl, K.2    Kaufmann, H.3
  • 40
    • 5144220039 scopus 로고    scopus 로고
    • Segmentation of petrographic images by integrating edge detection and region growing
    • Y. Zhou, J. Starkey, L. Mansinha, Segmentation of petrographic images by integrating edge detection and region growing, Computers & Geosciences, 30, 8, 817-831, 2004.
    • (2004) Computers & Geosciences , vol.30 , Issue.8 , pp. 817-831
    • Zhou, Y.1    Starkey, J.2    Mansinha, L.3
  • 41
    • 10744223883 scopus 로고    scopus 로고
    • Application of region-based segmentation and neural network edge detection to skin lesions
    • M.I. Rajab, M.S. Woolfson, S.P. Morgan, Application of region-based segmentation and neural network edge detection to skin lesions, Computerized Medical Imaging and Graphics, 28, 1-2, 61-68, 2004.
    • (2004) Computerized Medical Imaging and Graphics , vol.28 , Issue.1-2 , pp. 61-68
    • Rajab, M.I.1    Woolfson, M.S.2    Morgan, S.P.3
  • 42
    • 27144504462 scopus 로고    scopus 로고
    • A hybrid framework for 3D medical image segmentation
    • T. Chen, D. Metaxas, A hybrid framework for 3D medical image segmentation, Medical Image Analysis, 9, 6, 547-565, 2005.
    • (2005) Medical Image Analysis , vol.9 , Issue.6 , pp. 547-565
    • Chen, T.1    Metaxas, D.2
  • 43
    • 31744434431 scopus 로고    scopus 로고
    • A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography
    • I. Dydenko, F. Jamal, O. Bernard, J. D'hooge, I.E. Magnin, D. Friboulet, A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography, Medical Image Analysis, 10, 2, 162-177, 2006.
    • (2006) Medical Image Analysis , vol.10 , Issue.2 , pp. 162-177
    • Dydenko, I.1    Jamal, F.2    Bernard, O.3    D'hooge, J.4    Magnin, I.E.5    Friboulet, D.6
  • 44
    • 0000442474 scopus 로고
    • The morphological approach of segmentation: The watershed transformation
    • Dougherty E, Ed, Marcel Dekker, New York
    • S. Beucher, F. Meyer, 'The morphological approach of segmentation: The watershed transformation', in Dougherty E. (Ed.) Mathematical Morphology in Image Processing, Marcel Dekker, New York, 433-481, 1993.
    • (1993) Mathematical Morphology in Image Processing , pp. 433-481
    • Beucher, S.1    Meyer, F.2
  • 45
    • 0034141034 scopus 로고    scopus 로고
    • Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation
    • P.K. Saha, J.K. Udupa, D. Odhner, Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation, Computer Vision and Image Understanding, 77, 2, 145-174, 2000.
    • (2000) Computer Vision and Image Understanding , vol.77 , Issue.2 , pp. 145-174
    • Saha, P.K.1    Udupa, J.K.2    Odhner, D.3
  • 46
    • 0042469325 scopus 로고    scopus 로고
    • Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram
    • Q. Wang, Z. Chi, R. Zhao, Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram, Computer Vision and Image Understanding, 85, 2, 100-116, 2002.
    • (2002) Computer Vision and Image Understanding , vol.85 , Issue.2 , pp. 100-116
    • Wang, Q.1    Chi, Z.2    Zhao, R.3
  • 47
    • 0036680705 scopus 로고    scopus 로고
    • A generic fuzzy rule based image segmentation algorithm
    • G.C. Karmakar, L.S. Dooley, A generic fuzzy rule based image segmentation algorithm, Pattern Recognition Letters, 23, 10, 1215-1227, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.10 , pp. 1215-1227
    • Karmakar, G.C.1    Dooley, L.S.2
  • 48
    • 15944392039 scopus 로고    scopus 로고
    • Fuzzy relations applied to minimize over segmentation in watershed algorithms, Pattern Recognition Letters
    • 26, 6
    • L. Patino, Fuzzy relations applied to minimize over segmentation in watershed algorithms, Pattern Recognition Letters, 26, 6, 819-828, 2005.
    • (2005) , pp. 819-828
    • Patino, L.1
  • 49
    • 42449144601 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation
    • in press
    • W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 2006 (in press).
    • (2006) Pattern Recognition
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 50
    • 84958618539 scopus 로고    scopus 로고
    • A two layer case-based reasoning architecture for medical image understanding
    • I. Smith & B. Faltings Eds, Springer Verlag, Berlin
    • M. Grimnes, A. Aamodt, A two layer case-based reasoning architecture for medical image understanding, in I. Smith & B. Faltings (Eds.) Advances in Case-Based Reasoning, Springer Verlag, Berlin, 164-178 1996.
    • (1996) Advances in Case-Based Reasoning , pp. 164-178
    • Grimnes, M.1    Aamodt, A.2
  • 51
    • 84958683019 scopus 로고    scopus 로고
    • Case-based classification of ultrasonic B-Scans: Case-base organisation and case retrieval
    • B. Smyth and P. Cunningham Eds, Advances in Case-Based Reasoning, Springer Verlag. Berlin
    • J. Jarmulak, Case-based classification of ultrasonic B-Scans: Case-base organisation and case retrieval, in B. Smyth and P. Cunningham (Eds.) Advances in Case-Based Reasoning, LNAI 1488, Springer Verlag. Berlin, 100-111, 1998.
    • (1998) LNAI , vol.1488 , pp. 100-111
    • Jarmulak, J.1
  • 52
    • 42449158840 scopus 로고    scopus 로고
    • Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation
    • B. Smyth and P. Cunningham Eds, Advances in Case-Based Reasoning, Springer Verlag, Berlin
    • P. Perner, Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation, in B. Smyth and P. Cunningham (Eds.), Advances in Case-Based Reasoning, LNAI 1488, Springer Verlag, Berlin, 251-261, 1998.
    • (1998) LNAI , vol.1488 , pp. 251-261
    • Perner, P.1
  • 53
    • 0006716682 scopus 로고
    • MacRad: Radiology Image Resource with a Case-Based Retrieval System
    • M. Veloso and A. Aamodt eds, Springer, Berlin
    • R. Macura, K. Macura, MacRad: Radiology Image Resource with a Case-Based Retrieval System, in: M. Veloso and A. Aamodt (eds.), Case-Based Reasoning: Research and Development, Springer, Berlin, 43-45, 1995.
    • (1995) Case-Based Reasoning: Research and Development , pp. 43-45
    • Macura, R.1    Macura, K.2
  • 54
    • 0031056003 scopus 로고    scopus 로고
    • Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams
    • M. Haddad, K-P. Adlassnig, G. Porenta, Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams, Artificial Intelligence in Medicine, 9, 61-78, 1997.
    • (1997) Artificial Intelligence in Medicine , vol.9 , pp. 61-78
    • Haddad, M.1    Adlassnig, K.-P.2    Porenta, G.3
  • 55
    • 84876756219 scopus 로고    scopus 로고
    • Case based diagnosis in histopathology of breast tumours
    • M.C. Jaulent, C. Le Bozec, E. Zapletal, P. Degoulet, Case based diagnosis in histopathology of breast tumours. Medinfo. 9 Pt 1:544-8, 1998.
    • (1998) Medinfo , vol.9 , Issue.PART 1 , pp. 544-548
    • Jaulent, M.C.1    Le Bozec, C.2    Zapletal, E.3    Degoulet, P.4
  • 56
    • 22644449797 scopus 로고    scopus 로고
    • A recursive retrieval/adaption strategy
    • CBR for the reuse of image processing knowledge:, K.-D. Althoff, R. Bergmann, L.K. Branting Eds, Springer, Berlin
    • V. Ficet-Cauchard, C. Porquet, M. Revenu, CBR for the reuse of image processing knowledge: A recursive retrieval/adaption strategy, in K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.) Case-Based Reasoning Research and Development, Springer, Berlin, 438-453, 1999.
    • (1999) Case-Based Reasoning Research and Development , pp. 438-453
    • Ficet-Cauchard, V.1    Porquet, C.2    Revenu, M.3
  • 57
    • 67549086481 scopus 로고    scopus 로고
    • A case-based approach to image recognition
    • E. Blanzieri and L. Portinale Eds, Springer Verlag, Berlin
    • A. Micarelli, A. Neri, G. Sansonetti, A case-based approach to image recognition, in E. Blanzieri and L. Portinale (Eds.) Advances in Case-Based Reasoning, Springer Verlag, Berlin, 443-454, 2000.
    • (2000) Advances in Case-Based Reasoning , pp. 443-454
    • Micarelli, A.1    Neri, A.2    Sansonetti, G.3
  • 59
    • 84948156285 scopus 로고    scopus 로고
    • CBR Ultra Sonic Image Interpretation
    • E. Blanzieri and L. Portinale Eds, Advances in Case-based Reasoning, Springer Verlag, Berlin
    • P. Perner, CBR Ultra Sonic Image Interpretation. in: E. Blanzieri and L. Portinale (Eds.), Advances in Case-based Reasoning, LNAI 1898, Springer Verlag, Berlin, 479-481, 2000.
    • (2000) LNAI 1898 , pp. 479-481
    • Perner, P.1
  • 60
    • 7044231022 scopus 로고    scopus 로고
    • Incremental Learning of Retrieval Knowledge in a Case-Based Reasoning System
    • K.D. Ashley and D.G. Bridge Eds, Case-Based Reasoning, Research and Development, Springer Verlag, Berlin
    • P. Perner, Incremental Learning of Retrieval Knowledge in a Case-Based Reasoning System, in K.D. Ashley and D.G. Bridge (Eds.), Case-Based Reasoning - Research and Development, LNAI 2689, Springer Verlag, Berlin, 422-436, 2003.
    • (2003) LNAI , vol.2689 , pp. 422-436
    • Perner, P.1
  • 61
    • 42449157921 scopus 로고    scopus 로고
    • Are case-based reasoning and dissimilarity-based classification two sides of the same coin?
    • P. Perner, Are case-based reasoning and dissimilarity-based classification two sides of the same coin? Journal Engineering Applications of Artificial Intelligence, 5/3, 205-216, 2002.
    • (2002) Journal Engineering Applications of Artificial Intelligence , vol.5 , Issue.3 , pp. 205-216
    • Perner, P.1
  • 62
    • 0242372106 scopus 로고    scopus 로고
    • Health Monitoring by an Image Interpretation System - A System for Airborne Fungi Identification
    • P. Perner, R. Brause, H-G. Holzhütter Eds, Medical Data Analysis, Springer Verlag, Berlin
    • P. Perner, TH. Günther, H. Perner, G. Fiss, R. Ernst, Health Monitoring by an Image Interpretation System - A System for Airborne Fungi Identification, in P. Perner, R. Brause, H-G. Holzhütter (Eds.), Medical Data Analysis, LNCS 2868, Springer Verlag, Berlin, 64-77, 2003.
    • (2003) LNCS , vol.2868 , pp. 64-77
    • Perner, P.1    Günther, T.H.2    Perner, H.3    Fiss, G.4    Ernst, R.5
  • 63
    • 84942810547 scopus 로고    scopus 로고
    • Similarity Guided Learning of the Case Description and Improvement of the System Performance in an Image Classification System
    • S. Craw and A. Preece Eds, Advances in Case-Based Reasoning, Springer Verlag, Berlin
    • P. Perner, H. Perner, B. Müller, Similarity Guided Learning of the Case Description and Improvement of the System Performance in an Image Classification System, in S. Craw and A. Preece (Eds.), Advances in Case-Based Reasoning, LNAI 2416, Springer Verlag, Berlin, 604-612, 2002.
    • (2002) LNAI , vol.2416 , pp. 604-612
    • Perner, P.1    Perner, H.2    Müller, B.3
  • 64
    • 35048881037 scopus 로고    scopus 로고
    • Case Acquisition and Case Mining for Case-Based Object Recognition
    • P. Funk and P.A. González Calero eds, Advances in Case-Based Reasoning, Springer Verlag, Berlin
    • P. Perner, S. Jähnichen, Case Acquisition and Case Mining for Case-Based Object Recognition, in P. Funk and P.A. González Calero (eds.), Advances in Case-Based Reasoning, LNAI 3155, Springer Verlag, Berlin, 616-629, 2004.
    • (2004) LNAI , vol.3155 , pp. 616-629
    • Perner, P.1    Jähnichen, S.2
  • 65
    • 35048836202 scopus 로고    scopus 로고
    • Case-Based Object Recognition
    • P. Funk and P.A. Gonz'alez Calero Eds, Advances in Case-Based Reasoning, Springer Verlag, Berlin
    • P. Perner, A. Bühring, Case-Based Object Recognition, in P. Funk and P.A. Gonz'alez Calero (Eds.), Advances in Case-Based Reasoning, LNAI 3155, Springer Verlag, Berlin, 375-388, 2004.
    • (2004) LNAI , vol.3155 , pp. 375-388
    • Perner, P.1    Bühring, A.2
  • 68
    • 0027637388 scopus 로고
    • Interactive morphological watershed analysis for 3D medical images
    • W.E. Higgins, E.J. Ojard, Interactive morphological watershed analysis for 3D medical images, Computerized Medical Imaging and Graphics, 17, 4-5, 387-395, 1993.
    • (1993) Computerized Medical Imaging and Graphics , vol.17 , Issue.4-5 , pp. 387-395
    • Higgins, W.E.1    Ojard, E.J.2
  • 69
    • 0030265481 scopus 로고    scopus 로고
    • Segmentation of range images via data fusion and morphological watersheds
    • M. Baccar, L.A. Gee, R.C. Gonzalez, M.A. Abidi, Segmentation of range images via data fusion and morphological watersheds, Pattern Recognition, 29, 10, 1673-1687, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.10 , pp. 1673-1687
    • Baccar, M.1    Gee, L.A.2    Gonzalez, R.C.3    Abidi, M.A.4
  • 70
    • 0030801595 scopus 로고    scopus 로고
    • J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. van Dyck, E. raman, Watershed-based segmentation of 3D MR data for quantization, Magnetic Resonance Imaging, 15, 6, 679-688, 1997.
    • J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. van Dyck, E. raman, Watershed-based segmentation of 3D MR data for volume quantization, Magnetic Resonance Imaging, 15, 6, 679-688, 1997.
  • 71
    • 0035400763 scopus 로고    scopus 로고
    • An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images
    • P.S. Umesh Adiga, B.B. Chaudhuri, An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images, Pattern Recognition, 34, 7,1449-1458, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.7 , pp. 1449-1458
    • Umesh Adiga, P.S.1    Chaudhuri, B.B.2
  • 72
    • 0036334890 scopus 로고    scopus 로고
    • Automated Sulcal Segmentation Using Watersheds on the Cortical Surface
    • M.E. Rettmann, X. Han, C. Xu, J.L. Prince, Automated Sulcal Segmentation Using Watersheds on the Cortical Surface, NeuroImage, 15, 2, 329-344, 2002.
    • (2002) NeuroImage , vol.15 , Issue.2 , pp. 329-344
    • Rettmann, M.E.1    Han, X.2    Xu, C.3    Prince, J.L.4
  • 73
    • 7644234362 scopus 로고    scopus 로고
    • Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm1
    • M.M.J. Letteboer, O.F. Olsen, E.B. Dam, P.W.A. Willems, M.A. Viergever, W.J. Niessen, Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm1, Academic Radiology, 11, 10, 1125-1138, 2004.
    • (2004) Academic Radiology , vol.11 , Issue.10 , pp. 1125-1138
    • Letteboer, M.M.J.1    Olsen, O.F.2    Dam, E.B.3    Willems, P.W.A.4    Viergever, M.A.5    Niessen, W.J.6
  • 74
    • 2942557015 scopus 로고    scopus 로고
    • Watershed segmentation for breast tumor in 2-D sonography
    • Y.-L. Huang, D.-R. Chen, Watershed segmentation for breast tumor in 2-D sonography, Ultrasound in Medicine & Biology, 30, 5, 625-632, 2004.
    • (2004) Ultrasound in Medicine & Biology , vol.30 , Issue.5 , pp. 625-632
    • Huang, Y.-L.1    Chen, D.-R.2
  • 75
    • 27144510108 scopus 로고    scopus 로고
    • Case study: An evaluation of userassisted hierarchical watershed segmentation
    • J.E. Cates, R.T. Whitaker, G.M. Jones, Case study: An evaluation of userassisted hierarchical watershed segmentation, Medical Image Analysis, 9, 6, 566-578, 2005.
    • (2005) Medical Image Analysis , vol.9 , Issue.6 , pp. 566-578
    • Cates, J.E.1    Whitaker, R.T.2    Jones, G.M.3
  • 76
    • 23944502816 scopus 로고    scopus 로고
    • A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method
    • R. Rodríguez, T.E. Alarcón, O. Pacheco, A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method, Computers in Biology and Medicine, 35, 8, 665-686, 2005.
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.8 , pp. 665-686
    • Rodríguez, R.1    Alarcón, T.E.2    Pacheco, O.3
  • 77
    • 33745698371 scopus 로고    scopus 로고
    • Improved watershed segmentation algorithm for high resolution remote sensing images using texture
    • Z. Wang, C. Song, Z. Wu, X. Chen, Improved watershed segmentation algorithm for high resolution remote sensing images using texture, Proc. IEEE Int Conf. IGARSS '05, 5, 3721-3723, 2005.
    • (2005) Proc. IEEE Int Conf. IGARSS '05 , vol.5 , pp. 3721-3723
    • Wang, Z.1    Song, C.2    Wu, Z.3    Chen, X.4
  • 78
    • 33845982587 scopus 로고    scopus 로고
    • A new strategy for urinary sediment segmentation based on wavelet, morphology and combination method
    • in press
    • Y.-M. Li, X.-P. Zeng, A new strategy for urinary sediment segmentation based on wavelet, morphology and combination method, Computer Methods and Programs in Biomedicine, 2006 (in press).
    • (2006) Computer Methods and Programs in Biomedicine
    • Li, Y.-M.1    Zeng, X.-P.2
  • 79
    • 42449095383 scopus 로고    scopus 로고
    • Watershed and multimodal data for brain vessel segmentation: Application to the superior sagittal sinus
    • in press
    • N. Passat, C. Ronse, J. Baruthio, J.-P. Armspach, J. Foucher, Watershed and multimodal data for brain vessel segmentation: Application to the superior sagittal sinus, Image and Vision Computing, 2006 (in press).
    • (2006) Image and Vision Computing
    • Passat, N.1    Ronse, C.2    Baruthio, J.3    Armspach, J.-P.4    Foucher, J.5
  • 80
    • 33646865504 scopus 로고    scopus 로고
    • The use of watershed segmentation and GIS software for textural analysis of thin sections
    • J. Barraud, The use of watershed segmentation and GIS software for textural analysis of thin sections, Journal of Volcanology and Geothermal Research, 154, 1-2, 17-33, 2006.
    • (2006) Journal of Volcanology and Geothermal Research , vol.154 , Issue.1-2 , pp. 17-33
    • Barraud, J.1
  • 81
    • 33745660349 scopus 로고    scopus 로고
    • Marker-controlled watershed for lymphoma segmentation in sequential CT images
    • J. Yan, B. Zhao, L. Wang, A. Zelenetz, L. H. Schwartz, Marker-controlled watershed for lymphoma segmentation in sequential CT images, Medical Physics, 33, 7, 2452-2460, 2006.
    • (2006) Medical Physics , vol.33 , Issue.7 , pp. 2452-2460
    • Yan, J.1    Zhao, B.2    Wang, L.3    Zelenetz, A.4    Schwartz, L.H.5
  • 83
    • 0025446827 scopus 로고
    • Automated basin delineation from digital elevation models using mathematical morphology
    • P.J. Soille, M.M. Ansoult, Automated basin delineation from digital elevation models using mathematical morphology, Signal Processing, 20, 2, Pages 171-182, 1990.
    • (1990) Signal Processing , vol.20 , Issue.2 , pp. 171-182
    • Soille, P.J.1    Ansoult, M.M.2
  • 84
    • 0028484637 scopus 로고
    • Morphological multiscale segmentation for image coding
    • Ph. Salembier, Morphological multiscale segmentation for image coding, Signal Processing, 38, 3, 359-386, 1994.
    • (1994) Signal Processing , vol.38 , Issue.3 , pp. 359-386
    • Salembier, P.1
  • 85
    • 0028463913 scopus 로고
    • Watershed of a continuous function
    • L. Najman, M. Schmitt,Watershed of a continuous function, Signal Processing, 38, 1, 99-112, 1994.
    • (1994) Signal Processing , vol.38 , Issue.1 , pp. 99-112
    • Najman, L.1    Schmitt, M.2
  • 86
    • 0028464661 scopus 로고
    • Topographic distance and watershed lines
    • F. Meyer, Topographic distance and watershed lines, Signal Processing 38, 1, 113-125, 1994.
    • (1994) Signal Processing , vol.38 , Issue.1 , pp. 113-125
    • Meyer, F.1
  • 87
    • 0028444401 scopus 로고
    • Seeded Region Growing
    • R. Adams L. Bischof, Seeded Region Growing, IEEE Trans. on PAMI, 16, 6, 641-647, 1994.
    • (1994) IEEE Trans. on PAMI , vol.16 , Issue.6 , pp. 641-647
    • Adams, R.1    Bischof, L.2
  • 89
    • 0031374390 scopus 로고    scopus 로고
    • A multiscale gradient algorithm for image segmentation using watersheds
    • D. Wang, A multiscale gradient algorithm for image segmentation using watersheds, Pattern Recognition, 30, 12, 2043-2052, 1997.
    • (1997) Pattern Recognition , vol.30 , Issue.12 , pp. 2043-2052
    • Wang, D.1
  • 90
    • 0031252183 scopus 로고    scopus 로고
    • An improved seeded region growing algorithm
    • A. Mehnert, P. Jackway, An improved seeded region growing algorithm, Pattern Recognition Letters, 18, 10, 1065-1071, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.10 , pp. 1065-1071
    • Mehnert, A.1    Jackway, P.2
  • 91
  • 92
    • 0031248168 scopus 로고    scopus 로고
    • The flat zone approach: A general low-level region merging segmentation method
    • J. Crespo, R.W. Schafer, J. Serra, C. Gratin, F. Meyer, The flat zone approach: A general low-level region merging segmentation method, Signal Processing, 62, 1, 37-60, 1997.
    • (1997) Signal Processing , vol.62 , Issue.1 , pp. 37-60
    • Crespo, J.1    Schafer, R.W.2    Serra, J.3    Gratin, C.4    Meyer, F.5
  • 93
    • 0032297720 scopus 로고    scopus 로고
    • Parallel watershed transformation algorithms for image segmentation
    • A.N. Moga, B. Cramariuc, M. Gabbouj, Parallel watershed transformation algorithms for image segmentation, Parallel Computing, 24, 14, 1981-2001, 1998.
    • (1998) Parallel Computing , vol.24 , Issue.14 , pp. 1981-2001
    • Moga, A.N.1    Cramariuc, B.2    Gabbouj, M.3
  • 94
    • 0032629703 scopus 로고    scopus 로고
    • Low level image partitioning guided by the gradient watershed hierarchy
    • E. Pratikakis, H. Sahli, J. Cornelis, Low level image partitioning guided by the gradient watershed hierarchy, Signal Processing, 75, 2, 173-195, 1999.
    • (1999) Signal Processing , vol.75 , Issue.2 , pp. 173-195
    • Pratikakis, E.1    Sahli, H.2    Cornelis, J.3
  • 95
    • 0034055262 scopus 로고    scopus 로고
    • An efficient watershed algorithm based on connected components
    • A. Bieniek, A. Moga, An efficient watershed algorithm based on connected components, Pattern Recognition, 33, 6, 907-916, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.6 , pp. 907-916
    • Bieniek, A.1    Moga, A.2
  • 96
  • 97
    • 0035452531 scopus 로고    scopus 로고
    • Efficient image segmentation using partial differential equations and morphology
    • J. Weickert, Efficient image segmentation using partial differential equations and morphology, Pattern Recognition, 34, 9, 1813-1824, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.9 , pp. 1813-1824
    • Weickert, J.1
  • 98
    • 0000950331 scopus 로고    scopus 로고
    • The watershed transform: Definitions, algorithms and parallelization strategies
    • J.B.T.M. Roerdink, A. Meijster, The watershed transform: Definitions, algorithms and parallelization strategies, Fundamenta Informaticae 41, 187-228, 2001.
    • (2001) Fundamenta Informaticae , vol.41 , pp. 187-228
    • Roerdink, J.B.T.M.1    Meijster, A.2
  • 99
    • 0037410676 scopus 로고    scopus 로고
    • A multichannel watershed-based algorithm for supervised texture segmentation
    • N. Malpica, J.E. Ortuño, A. Santos, A multichannel watershed-based algorithm for supervised texture segmentation, Pattern Recognition Letters, 24, 9-10, 1545-1554, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1545-1554
    • Malpica, N.1    Ortuño, J.E.2    Santos, A.3
  • 100
    • 0037235769 scopus 로고    scopus 로고
    • Multiresolution-based watersheds for efficient image segmentation
    • J.-B. Kim, H.-J. Kim, Multiresolution-based watersheds for efficient image segmentation, Pattern Recognition Letters, 24, 1-3, pp 473-488, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 473-488
    • Kim, J.-B.1    Kim, H.-J.2
  • 102
  • 103
    • 18444364220 scopus 로고    scopus 로고
    • A hybrid boundary detection algorithm based on watershed and snake
    • C.G. Zhao, T.G. Zhuang, A hybrid boundary detection algorithm based on watershed and snake, Pattern Recognition Letters, 26, 9, 1256-1265, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.9 , pp. 1256-1265
    • Zhao, C.G.1    Zhuang, T.G.2
  • 104
    • 14544277946 scopus 로고    scopus 로고
    • Region merging using homogeneity and edge integrity for watershed-based image segmentation
    • S.E. Hernandez, K.E. Barner, Y. Yuan, Region merging using homogeneity and edge integrity for watershed-based image segmentation, Optical Engineering, 44, 1, 2005.
    • (2005) Optical Engineering , vol.44 , pp. 1
    • Hernandez, S.E.1    Barner, K.E.2    Yuan, Y.3
  • 105
    • 18444389172 scopus 로고    scopus 로고
    • A fast watershed algorithm based on chain code and its application in image segmentation
    • H. Sun, J. Yang, M. Ren, A fast watershed algorithm based on chain code and its application in image segmentation, Pattern Recognition Letters, 26, 9, 1266-1274, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.9 , pp. 1266-1274
    • Sun, H.1    Yang, J.2    Ren, M.3
  • 108
    • 33646522180 scopus 로고    scopus 로고
    • Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic
    • A. Duarte, Á. Sánchez, F. Fernández, A.S. Montemayor, Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic, Pattern Recognition Letters, 27, 11 1239-1251, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.11 , pp. 1239-1251
    • Duarte, A.1    Sánchez, A.2    Fernández, F.3    Montemayor, A.S.4
  • 109
    • 42449136514 scopus 로고    scopus 로고
    • Combining wavelets and watersheds for robust multiscale image segmentation
    • in press
    • C. Rosito Jung, Combining wavelets and watersheds for robust multiscale image segmentation, Image and Vision Computing, 2006 (in press).
    • (2006) Image and Vision Computing
    • Rosito Jung, C.1
  • 110
    • 33645011100 scopus 로고    scopus 로고
    • Over segmentation Reduction by Flooding Regions and Digging Watershed Lines
    • World Scientific, Singapore, 20, 1
    • M. Frucci, Over segmentation Reduction by Flooding Regions and Digging Watershed Lines, International Journal of Pattern Recognition and Artificial Intelligence, World Scientific, Singapore, 20, 1, 15-38, 2006.
    • (2006) International Journal of Pattern Recognition and Artificial Intelligence , pp. 15-38
    • Frucci, M.1
  • 111
    • 0027589487 scopus 로고
    • Control and explanation in signal understanding environment
    • F. Kummert, H. Niemann, R. Prechtel, G. Sagerer, Control and explanation in signal understanding environment, Signal Processing, 32, 111-145, 1993.
    • (1993) Signal Processing , vol.32 , pp. 111-145
    • Kummert, F.1    Niemann, H.2    Prechtel, R.3    Sagerer, G.4
  • 112
    • 31544463514 scopus 로고    scopus 로고
    • A framework to enable the semantic inferencing and querying of multimedia content
    • J. Hunter, S. Little, A framework to enable the semantic inferencing and querying of multimedia content, International Journal of Web Engineering and Technology, 2-2/, 264-286, 2005
    • (2005) International Journal of Web Engineering and Technology , vol.2 -2 , pp. 264-286
    • Hunter, J.1    Little, S.2
  • 113
    • 0005246953 scopus 로고
    • How dissimilar are two gray-scale images
    • Springer, Berlin
    • P. Zamperoni, V. Starovotov, How dissimilar are two gray-scale images, Proc. 17 th DAGM Symposium, Springer, Berlin, 448-445, 1995.
    • (1995) Proc. 17 th DAGM Symposium , pp. 448-445
    • Zamperoni, P.1    Starovotov, V.2
  • 118
    • 58149411184 scopus 로고
    • Feature similarity
    • A. Tversky, Feature similarity, Psychological Review 84(4), 327-350, 1977.
    • (1977) Psychological Review , vol.84 , Issue.4 , pp. 327-350
    • Tversky, A.1
  • 119
    • 33750693396 scopus 로고    scopus 로고
    • Conceptual clustering and case generalization of 2- dimensional forms
    • S. Jänichen, P. Perner, Conceptual clustering and case generalization of 2- dimensional forms, Computational Intelligence, 22 (3/4), 177-193, 2006.
    • (2006) Computational Intelligence , vol.22 , Issue.3-4 , pp. 177-193
    • Jänichen, S.1    Perner, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.