-
2
-
-
79959693103
-
-
OPLEDP 0146-9592 10.1103/PhysRevLett.64.1107
-
H. Schmidt and A. Imamoglu, Opt. Lett. OPLEDP 0146-9592 10.1103/PhysRevLett.64.1107 21, 1936 (1996).
-
(1996)
Opt. Lett.
, vol.21
, pp. 1936
-
-
Schmidt, H.1
Imamoglu, A.2
-
3
-
-
0001422537
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.74.2447
-
A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.74.2447 74, 2447 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2447
-
-
Kasapi, A.1
Jain, M.2
Yin, G.Y.3
Harris, S.E.4
-
4
-
-
0000203983
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.84.1419
-
M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.1419 84, 1419 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 1419
-
-
Lukin, M.D.1
Imamoglu, A.2
-
5
-
-
11544374619
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.3611
-
S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.3611 81, 3611 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3611
-
-
Harris, S.E.1
Yamamoto, Y.2
-
6
-
-
0037595505
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.197902
-
C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.197902 90, 197902 (2003)
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 197902
-
-
Ottaviani, C.1
Vitali, D.2
Artoni, M.3
Cataliotti, F.4
Tombesi, P.5
-
7
-
-
0036509290
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.65.033833
-
D. Petrosyan and G. Kurizki, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.65.033833 65, 033833 (2002)
-
(2002)
Phys. Rev. A
, vol.65
, pp. 033833
-
-
Petrosyan, D.1
Kurizki, G.2
-
8
-
-
33344468385
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.71.023803
-
I. Friedler, G. Kurizki, and D. Petrosyan, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.71.023803 71, 023803 (2005).
-
(2005)
Phys. Rev. A
, vol.71
, pp. 023803
-
-
Friedler, I.1
Kurizki, G.2
Petrosyan, D.3
-
9
-
-
0035921924
-
-
NATUAS 0028-0836 10.1038/35095000
-
M. Lukin and A. Imamoglu, Nature (London) NATUAS 0028-0836 10.1038/35095000 413, 273 (2001).
-
(2001)
Nature (London)
, vol.413
, pp. 273
-
-
Lukin, M.1
Imamoglu, A.2
-
10
-
-
33749561370
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.74.041803
-
K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.041803 74, 041803 (R) (2006).
-
(2006)
Phys. Rev. A
, vol.74
, pp. 041803
-
-
Jiang, K.J.1
Deng, L.2
Payne, M.G.3
-
11
-
-
34548803531
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.76.033819
-
K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.76.033819 76, 033819 (2007).
-
(2007)
Phys. Rev. A
, vol.76
, pp. 033819
-
-
Jiang, K.J.1
Deng, L.2
Payne, M.G.3
-
12
-
-
0035440607
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.64.031802
-
M. G. Payne and L. Deng, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.64.031802 64, 031802 (R) (2001), and references on superluminal propagation and gain-assisted schemes therein.
-
(2001)
Phys. Rev. A
, vol.64
, pp. 031802
-
-
Payne, M.G.1
Deng, L.2
-
13
-
-
42449120967
-
-
We have neglected corrections due to a very weak spontaneous Raman emission near the frequency of Es.
-
We have neglected corrections due to a very weak spontaneous Raman emission near the frequency of Es.
-
-
-
-
14
-
-
42449161439
-
-
The dominant contribution to δ3p is | δ4 | | δ2p |.
-
The dominant contribution to δ3p is | δ4 | | δ2p |.
-
-
-
-
15
-
-
42449120123
-
-
In EIT-based schemes | δ2p τ | >1 leads to severe penalties.
-
In EIT-based schemes | δ2p τ | >1 leads to severe penalties.
-
-
-
-
16
-
-
33750198230
-
-
Without this condition it is in general incorrect to make a steady-state approximation, especially if γ31 τ<1. This conclusion applies equally to all weakly-driven EIT-based schemes. See PLRAAN 1050-2947 10.1103/PhysRevA.74.043810
-
Without this condition it is in general incorrect to make a steady-state approximation, especially if γ31 τ<1. This conclusion applies equally to all weakly-driven EIT-based schemes. See M. Payne, L. Deng, and K. Jiang, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.043810 74, 043810 (2006).
-
(2006)
Phys. Rev. A
, vol.74
, pp. 043810
-
-
Payne, M.1
Deng, L.2
Jiang, K.3
-
17
-
-
42449143408
-
-
Typically, the lead time is about 10% of c. Thus it is quite accurate to estimate the device transient time using free-space speed of light.
-
Typically, the lead time is about 10% of c. Thus it is quite accurate to estimate the device transient time using free-space speed of light.
-
-
-
-
18
-
-
42449133320
-
-
There is a gain-induced static [i.e., ΩP dependent, see Fig. 1] phase. This static phase is independent of the nonlinear phase shift laser field Rabi frequency Ω43 and can be effectively eliminated technically.
-
There is a gain-induced static [i.e., ΩP dependent, see Fig. 1] phase. This static phase is independent of the nonlinear phase shift laser field Rabi frequency Ω43 and can be effectively eliminated technically.
-
-
-
|