-
1
-
-
34547295859
-
-
A.M. Bernstein, C.N. Papanicolas, AIP Conf. Proc. 904, 1 (2007) hep-ph/0708.0008.
-
(2007)
AIP Conf. Proc.
, vol.904
, pp. 1
-
-
Bernstein1
-
2
-
-
0042730520
-
-
L. Tiator, D. Drechsel, S.S. Kamalov, S.N. Yang, Eur. Phys. J. A 17, 357 (2003).
-
(2003)
Eur. Phys. J. A
, vol.17
, pp. 357
-
-
Tiator1
-
3
-
-
18344418230
-
-
G. Blanpied, Phys. Rev. C 64, 025203 (2001).
-
(2001)
Phys. Rev. C
, vol.64
, pp. 025203
-
-
Blanpied1
-
4
-
-
0040238369
-
-
A.J. Buchmann, E. Hernández, A. Faessler, Phys. Rev. C 55, 448 (1997).
-
(1997)
Phys. Rev. C
, vol.55
, pp. 448
-
-
Buchmann1
-
5
-
-
14344284360
-
-
A.J. Buchmann, E.M. Henley, Phys. Rev. C 63, 015202 (2001).
-
(2001)
Phys. Rev. C
, vol.63
, pp. 015202
-
-
Buchmann1
-
6
-
-
33846120688
-
-
V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)
-
(2007)
Phys. Rep.
, vol.437
, pp. 125
-
-
Pascalutsa1
-
7
-
-
0000590287
-
-
M.N. Butler, M.J. Savage, R.P. Springer, Phys. Rev. D 49, 3459 (1994)
-
(1994)
Phys. Rev. D
, vol.49
, pp. 3459
-
-
Butler1
-
10
-
-
17044433817
-
-
A.J. Buchmann, R.F. Lebed, Phys. Rev. D 62, 096005 (2000)
-
(2000)
Phys. Rev. D
, vol.62
, pp. 096005
-
-
Buchmann1
-
11
-
-
0007166573
-
-
G. Dillon, G. Morpurgo, Phys. Lett. B 448, 107 (1999).
-
(1999)
Phys. Lett. B
, vol.448
, pp. 107
-
-
Dillon1
-
12
-
-
0036540126
-
-
A.J. Buchmann, E.M. Henley, Phys. Rev. D 65, 073017 (2002). In tables I and II, replace.
-
(2002)
Phys. Rev. D
, vol.65
, pp. 073017
-
-
Buchmann1
-
14
-
-
42449104994
-
-
If two of these had the same particle index, spin commutation relations would reduce them to a single Pauli matrix
-
If two of these had the same particle index, spin commutation relations would reduce them to a single Pauli matrix.
-
-
-
-
15
-
-
0037632365
-
-
F. Gürsey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)
-
(1964)
Phys. Rev. Lett.
, vol.13
, pp. 173
-
-
Gürsey1
-
16
-
-
42449106657
-
-
For ground-state baryons an allowed operator ω must transform according to one of the irreducible representations found in the product 56 × 56 = 1 + 35 + 405 + 2695. Here, the 1, 35, 405, and 2695 dimensional representations, are respectively connected with zero-, one-, two-, and three-body operators. Because the 2695 occurs only once, there is a unique three-quark magnetic octupole operator
-
For ground-state baryons an allowed operator ω must transform according to one of the irreducible representations found in the product 56 × 56 = 1 + 35 + 405 + 2695. Here, the 1, 35, 405, and 2695 dimensional representations, are respectively connected with zero-, one-, two-, and three-body operators. Because the 2695 occurs only once, there is a unique three-quark magnetic octupole operator.
-
-
-
|