메뉴 건너뛰기




Volumn 55, Issue 3 SUPPL. B, 1997, Pages 3116-3123

Universal density-force relations for polymers near a repulsive wall

Author keywords

[No Author keywords available]

Indexed keywords


EID: 4244017793     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/physreve.55.3116     Document Type: Article
Times cited : (68)

References (55)
  • 3
    • 5644261638 scopus 로고    scopus 로고
    • note
    • If the wall acts on the monomers with a short-range repulsive potential ν(z) the force per area follows [2] from the monomer density on multiplying by -dνldz and on integrating over z. Note that v is a "nonuniversal" quantity that depends on microscopic details characterizing the monomers and the wall. For potentials ν that repel long polymer chains the "universal" quantities such as the density profile exponent and the density-force amplitude are independent of these details and have definite values 1/v and B, respectively. However, for potentials that characterize an attractive wall or a wall at the adsorption threshold [1.4] and for which -dν/dz changes sign on varying z, the argument [1.2] for proportionality between the osmotic pressure and the monomer density close to the wall (just out of the potential range) breaks down and the profile exponent is different from 1/v [1,4].
  • 5
    • 85088621543 scopus 로고    scopus 로고
    • note
    • b the polymer density in the bulk.
  • 6
    • 85088620037 scopus 로고    scopus 로고
    • note
    • BT times the derivative with respect to the position of the wall (in the direction perpendicular to its surface and away from the polymer chain) of the logarithm of the polymer chain partition function.
  • 7
    • 5644277965 scopus 로고    scopus 로고
    • In this case 1/v=2
    • In this case 1/v=2.
  • 8
    • 85088618662 scopus 로고    scopus 로고
    • note
    • BTA) is the same as the force which the polymer solution exerts onto the particle, pushing it towards the wall.
  • 13
    • 85088620199 scopus 로고    scopus 로고
    • note
    • x, even in the presence of excluded-volume interaction, compare Sec. 5.6.3 in Ref. [4].
  • 14
    • 0002299935 scopus 로고
    • 1/v. This fundamental property which is consistent with Refs. [5,6] is not restricted to the present situation, compare the discussion in Sec. V.
    • (1981) Nucl. Phys. B , vol.190 , Issue.FS3 , pp. 1
    • Symanzik, K.1
  • 15
    • 5644302665 scopus 로고    scopus 로고
    • note
    • (as) and an amplitude ratio of the form of the rhs of Eq (11). From Eqs. (4)-(8) one sees that from the density-force ratio (11) one may predict the corresponding ratios in the other situations (i)-(iv), since all these ratios are the same (compare the introductory remarks and Ref. [37]). For the behavior at z- a see the last paragraph of Sec.V and Ref. [47].
  • 17
    • 85088621986 scopus 로고    scopus 로고
    • note
    • -1/v of the critical temperature of the magnet confined between parallel plates with separation D.
  • 18
    • 85088621743 scopus 로고    scopus 로고
    • note
    • x are essentially the ground-state energies [1].
  • 19
    • 5644254831 scopus 로고    scopus 로고
    • note
    • R in the field theory.
  • 21
    • 85088620427 scopus 로고    scopus 로고
    • note
    • k introduced in [19], can be related to a half space amplitude [11]. For ideal chains in d = 3, A=2π.
  • 22
    • 0001185843 scopus 로고
    • In addition to the short-distance expansion and the shift identity discussed below, one needs a "small radius expansion" explained in Refs. [11] and [19]. The "small radius expansion" involves the universal amplitude of [20] and applies also to other problems where a polymer interacts with a small repulsive sphere. Compare P. G. de Gennes, C. R. Acad. Sci. Ser B 288, 359 (1979) and T. Odijk, Macromolecules 29, 1842 (1996).
    • (1979) C. R. Acad. Sci. Ser B , vol.288 , pp. 359
    • De Gennes, P.G.1
  • 23
    • 0001544058 scopus 로고    scopus 로고
    • In addition to the short-distance expansion and the shift identity discussed below, one needs a "small radius expansion" explained in Refs. [11] and [19]. The "small radius expansion" involves the universal amplitude of [20] and applies also to other problems where a polymer interacts with a small repulsive sphere. Compare P. G. de Gennes, C. R. Acad. Sci. Ser B 288, 359 (1979) and T. Odijk, Macromolecules 29, 1842 (1996).
    • (1996) Macromolecules , vol.29 , pp. 1842
    • Odijk, T.1
  • 24
    • 5644249729 scopus 로고    scopus 로고
    • note
    • To be precise we consider a plate of microscopic thickness. However, most of our conclusions are independent of the thickness.
  • 25
    • 85088619109 scopus 로고    scopus 로고
    • note
    • x/Â, compare the counterpart of the normalization (18) discussed in front of Eq. (20b) and Ref. [33].
  • 26
    • 85088619308 scopus 로고    scopus 로고
    • note
    • L in Eq. (4.16) of Ref. [19] is given by the product of ÂD(U- 1) and the partition function of a chain with one end fixed in the bulk.
  • 27
    • 33645999511 scopus 로고
    • The quantities P and f in Eqs. (3.1), (3.2) and Fig. 3 of this reference correspond to our quantities δf and U
    • S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954). The quantities P and f in Eqs. (3.1), (3.2) and Fig. 3 of this reference correspond to our quantities δf and U.
    • (1954) J. Chem. Phys. , vol.22 , pp. 1255
    • Asakura, S.1    Oosawa, F.2
  • 29
    • 5644294745 scopus 로고    scopus 로고
    • Compare the Appendix
    • Compare the Appendix.
  • 30
    • 5644301336 scopus 로고    scopus 로고
    • note
    • s).
  • 32
    • 0001856561 scopus 로고
    • edited by C. Domb and J.L. Lebowitz Academic, London
    • K. Binder, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic, London, 1983), Vol. 8, pp. 1-144.
    • (1983) Phase Transitions and Critical Phenomena , vol.8 , pp. 1-144
    • Binder, K.1
  • 33
    • 0003130040 scopus 로고
    • edited by C. Domb and J.L. Lebowitz Academic, London
    • (a) H.W. Diehl, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic, London, 1986), Vol. 10, pp. 75-267
    • (1986) Phase Transitions and Critical Phenomena , vol.10 , pp. 75-267
    • Diehl, H.W.1
  • 35
    • 85088619429 scopus 로고    scopus 로고
    • note
    • 1 is the first of the n components of the order parameter density (or GL field) Φ. The formal limit n→0 [1,4,29] is taken after the calculation of the GL averages.
  • 36
    • 85088619275 scopus 로고    scopus 로고
    • note
    • c, which inside & may be converted to a factor L by partial integration.
  • 40
    • 85088619116 scopus 로고    scopus 로고
    • note
    • 1/v always remains the same (as long as the wall at z = 0 is repulsive) and is independent of the variables D introduced in Sec. I. This is a well known feature of short-distance expansions.
  • 41
    • 85088620543 scopus 로고    scopus 로고
    • note
    • 4 coupling constant is to be taken at its fixed-point value.
  • 43
    • 85088619160 scopus 로고    scopus 로고
    • note
    • B are integrated around (r∥,0).
  • 44
    • 5644297527 scopus 로고    scopus 로고
    • note
    • 2 term in the Hamiltonian [31].
  • 45
    • 5644293513 scopus 로고    scopus 로고
    • note
    • p is the distance of the particle from the wall, compare, e.g., Sec. 4 D in Ref. [19].
  • 47
    • 5644226563 scopus 로고    scopus 로고
    • note
    • Q/Ω and equals 〈Ψ〉 Here Q labels the polymer chains in a macroscopic volume Ω. Compare, e.g., Eq (A.12) in Ref. [43].
  • 48
    • 5644266520 scopus 로고    scopus 로고
    • note
    • This relation is quite general (see, e.g., Ref, [35] and references contained therein) and has been verified for the case we are considering in Appendix B 3 of Ref. [43].
  • 50
    • 5644264049 scopus 로고    scopus 로고
    • note
    • x and D.
  • 51
    • 85088620146 scopus 로고    scopus 로고
    • note
    • b are equal functions of z for z≪D.
  • 52
    • 5644249728 scopus 로고    scopus 로고
    • note
    • A) which readily follows from the expressions for G and X given in Ref. [19].
  • 54
    • 5644223539 scopus 로고    scopus 로고
    • note
    • A away from the center of the sphere.
  • 55
    • 5644234199 scopus 로고    scopus 로고
    • note
    • This complication is, of course, absent for the case of a GL system describing a critical fluid right at the critical point [11], where t = 0. In this case proving the asymptotic validity of the Deriagin approximation for the free energy of interaction is completely straightforward [U].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.