-
2
-
-
0004136345
-
-
North-Holland, Amsterdam, A. Hansen, D. Bideau
-
Disorder and Granular Media, edited by A. Hansen and D. Bideau (North-Holland, Amsterdam, 1992).
-
(1992)
Disorder and Granular Media
-
-
-
4
-
-
0029256435
-
-
H. Hayakawa, H. Nishimori, S. Sasa, and Y.-H. Taguchi, Jpn. J. Appl. Phys. Part I 34, 397 (1995).
-
(1995)
Jpn. J. Appl. Phys. Part I
, vol.34
, pp. 397
-
-
Hayakawa, H.1
Nishimori, H.2
Sasa, S.3
Taguchi, Y.-H.4
-
11
-
-
0001251007
-
-
J. Lee, Physica A 219, 305 (1995).
-
(1995)
Physica A
, vol.219
, pp. 305
-
-
Lee, J.1
-
13
-
-
0024640863
-
-
B. Thomas, M. O. Mason, Y. A. Liu, and A. M. Squires, Powder Technol. 57, 267 (1989).
-
(1989)
Powder Technol.
, vol.57
, pp. 267
-
-
Thomas, B.1
Mason, M.O.2
Liu, Y.A.3
Squires, A.M.4
-
15
-
-
0001714599
-
-
See, e.g., A. Kudrolli, M. Wolpert, and J. P. Gollub, Phys. Rev. Lett. 78, 1383 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1383
-
-
Kudrolli, A.1
Wolpert, M.2
Gollub, J.P.3
-
17
-
-
21144483425
-
-
Note that particles were not allowed to rotate
-
J. Lee and H. J. Herrmann, J. Phys. A 26, 373 (1993). Note that particles were not allowed to rotate.
-
(1993)
J. Phys. A
, vol.26
, pp. 373
-
-
Lee, J.1
Herrmann, H.J.2
-
19
-
-
0003478288
-
-
Springer, New York
-
See, e.g., J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1983).
-
(1983)
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
20
-
-
85036330114
-
-
We define [Formula Presented], where [Formula Presented] is the average and standard deviation of the dominant peak of [Formula Presented], respectively. We choose [Formula Presented] larger than [Formula Presented] in order to give more weight to the trajectories of initially compact piles. Increasing the difference from the mean [Formula Presented] results in a small but systematic increase of [Formula Presented]
-
We define τ¯=τo+2δτ, where τo,δτ is the average and standard deviation of the dominant peak of D(τ), respectively. We choose τ¯ larger than τo in order to give more weight to the trajectories of initially compact piles. Increasing the difference from the mean (2δτ) results in a small but systematic increase of τ¯.
-
-
-
|