-
1
-
-
0002403402
-
-
E.D. Potter, J.L. Herek, S. Perersen, Q. Liu and A.H. Zewail, Nature 355, 66 (1992);
-
(1992)
Nature
, vol.355
, pp. 66
-
-
Potter, E.D.1
Herek, J.L.2
Perersen, S.3
Liu, Q.4
Zewail, A.H.5
-
3
-
-
36549092361
-
-
N.F. Scherer, A.J. Ruggiero, M. Du and G.R. Fleming, J. Chem. Phys. 93, 856 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 856
-
-
Scherer, N.F.1
Ruggiero, A.J.2
Du, M.3
Fleming, G.R.4
-
4
-
-
36449008610
-
-
N.F. Scherer, R.J. Carlson, A. Matro, M. Du, A.J. Ruggiero, V. Romero-Rochín, J.A. Cina, G.R. Fleming and S.A. Rice, J. Chem Phys. 95, 1487 (1991);
-
(1991)
J. Chem Phys.
, vol.95
, pp. 1487
-
-
Scherer, N.F.1
Carlson, R.J.2
Matro, A.3
Du, M.4
Ruggiero, A.J.5
Romero-Rochín, V.6
Cina, J.A.7
Fleming, G.R.8
Rice, S.A.9
-
5
-
-
0001373021
-
-
N.F. Scherer, A. Matro, L.D. Ziegler, M. Du, R.J. Carlson, J.A. Cina and G.R. Fleming, J. Chem Phys. 96, 4180 (1992).
-
(1992)
J. Chem Phys.
, vol.96
, pp. 4180
-
-
Scherer, N.F.1
Matro, A.2
Ziegler, L.D.3
Du, M.4
Carlson, R.J.5
Cina, J.A.6
Fleming, G.R.7
-
7
-
-
11944257534
-
-
B. Kohler, V.V. Yakovlev, J. Che, J.L. Krause, M. Messina, K.R. Wilson, N. Schwentner, R.M. Whitnell and Y.J. Yan, Phys. Rev. Lett. 74, 3360 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 3360
-
-
Kohler, B.1
Yakovlev, V.V.2
Che, J.3
Krause, J.L.4
Messina, M.5
Wilson, K.R.6
Schwentner, N.7
Whitnell, R.M.8
Yan, Y.J.9
-
11
-
-
0001377643
-
-
U. Banin, A. Bartana, S. Ruhman and R. Kosloff, J. Chem. Phys. 101, 8461 (1994).
-
(1994)
J. Chem. Phys.
, vol.101
, pp. 8461
-
-
Banin, U.1
Bartana, A.2
Ruhman, S.3
Kosloff, R.4
-
14
-
-
33751157106
-
-
D.M. Jonas, S.E. Bradforth, S.A. Passino and G.R. Fleming, J. Phys. Chem. 99, 2594 (1995).
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 2594
-
-
Jonas, D.M.1
Bradforth, E.2
Passino, S.A.3
Fleming, G.R.4
-
25
-
-
85037194847
-
-
P. Pérez-Alcázar, B. Sc. thesis, UNAM, Mexico, 1995
-
P. Pérez-Alcázar, B. Sc. thesis, UNAM, Mexico, 1995.
-
-
-
-
26
-
-
85037190936
-
-
To be precise one needs to solve the Schrödinger equation for the first pulse and store the molecular evolution for as long as one wants to calculate the interferogram. Then one can solve for the second pulse, using as ``initial condition'' a molecular state a few time widths (Formula presented) before the arrival of the second pulse
-
To be precise one needs to solve the Schrödinger equation for the first pulse and store the molecular evolution for as long as one wants to calculate the interferogram. Then one can solve for the second pulse, using as ``initial condition'' a molecular state a few time widths (Formula presented) before the arrival of the second pulse.
-
-
-
|