-
1
-
-
36549101968
-
-
H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, Appl. Phys. Lett. 57, 2814 (1990).
-
(1990)
Appl. Phys. Lett.
, vol.57
, pp. 2814
-
-
Yokoyama, H.1
Nishi, K.2
Anan, T.3
Yamada, H.4
Brorson, S.D.5
Ippen, E.P.6
-
2
-
-
0000716499
-
-
G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
-
(1991)
Phys. Rev. A
, vol.44
, pp. 669
-
-
Björk, G.1
Machida, S.2
Yamamoto, Y.3
Igeta, K.4
-
3
-
-
4644242654
-
-
C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 3314
-
-
Weisbuch, C.1
Nishioka, M.2
Ishikawa, A.3
Arakawa, Y.4
-
4
-
-
0000951285
-
-
R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, Phys. Rev. A 48, 2246 (1993).
-
(1993)
Phys. Rev. A
, vol.48
, pp. 2246
-
-
Stanley, R.P.1
Houdré, R.2
Oesterle, U.3
Ilegems, M.4
Weisbuch, C.5
-
5
-
-
35949005622
-
-
V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, Phys. Rev. B 49, 8774 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 8774
-
-
Savona, V.1
Hradil, Z.2
Quattropani, A.3
Schwendimann, P.4
-
6
-
-
0028529464
-
-
R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Phys. Rev. Lett. 73, 2043 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2043
-
-
Houdré, R.1
Weisbuch, C.2
Stanley, R.P.3
Oesterle, U.4
Pellandini, P.5
Ilegems, M.6
-
8
-
-
0001289731
-
-
H. Wang, J. Shah, T. C. Damen, W. Y. Jan, J. E. Cunningham, M. Hong, and J. P. Mannaerts, Phys. Rev. B 51, 14 713 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 14 713
-
-
Wang, H.1
Shah, J.2
Damen, T.C.3
Jan, W.Y.4
Cunningham, J.E.5
Hong, M.6
Mannaerts, J.P.7
-
9
-
-
0000779315
-
-
R. Houdré, J. L. Gibernon, P. Pellandini, R. P. Stanley, U. Oesterle, C. Weisbuch, J. O’Gorman, B. Roycroft, and M. Ilegems, Phys. Rev. B 52, 7810 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 7810
-
-
Houdré, R.1
Gibernon, J.L.2
Pellandini, P.3
Stanley, R.P.4
Oesterle, U.5
Weisbuch, C.6
O’Gorman, J.7
Roycroft, B.8
Ilegems, M.9
-
10
-
-
0008996524
-
-
F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, Phys. Rev. B 53, 7642 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 7642
-
-
Tassone, F.1
Piermarocchi, C.2
Savona, V.3
Quattropani, A.4
Schwendimann, P.5
-
11
-
-
0000639445
-
-
R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, Phys. Rev. B 53, 10 995 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 10 995
-
-
Stanley, R.P.1
Houdré, R.2
Weisbuch, C.3
Oesterle, U.4
Ilegems, M.5
-
12
-
-
0001607396
-
-
V. Savona, F. Tassone, C. Piermarocchi, A. Quattropani, and P. Schwerdimann, Phys. Rev. B 53, 13 051 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 13 051
-
-
Savona, V.1
Tassone, F.2
Piermarocchi, C.3
Quattropani, A.4
Schwerdimann, P.5
-
14
-
-
0030566529
-
-
D. M. Whittaker, P. Kinsler, T. A. Fisher, M. S. Skolnick, A. Armitage, A. M. Afshar, M. D. Sturge, J. S. Roberts, G. Hill, and M. A. Pate, Phys. Rev. Lett. 77, 4792 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 4792
-
-
Whittaker, D.M.1
Kinsler, P.2
Fisher, T.A.3
Skolnick, M.S.4
Armitage, A.5
Afshar, A.M.6
Sturge, M.D.7
Roberts, J.S.8
Hill, G.9
Pate, M.A.10
-
15
-
-
0001307183
-
-
F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson Jr., D. V. Wick, J. D. Berger, O. Lyngnes, H. M. Gibbs, and K. Tai, Phys. Rev. Lett. 77, 5257 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 5257
-
-
Jahnke, F.1
Kira, M.2
Koch, S.W.3
Khitrova, G.4
Lindmark, E.K.5
Nelson, T.R.6
Wick, D.V.7
Berger, J.D.8
Lyngnes, O.9
Gibbs, H.M.10
Tai, K.11
-
16
-
-
0000879933
-
-
A. Armitage, T. A. Fisher, M. S. Skolnick, D. M. Whittaker, P. Kinsler, and J. S. Roberts, Phys. Rev. B 55, 16 395 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 16 395
-
-
Armitage, A.1
Fisher, T.A.2
Skolnick, M.S.3
Whittaker, D.M.4
Kinsler, P.5
Roberts, J.S.6
-
17
-
-
0001735011
-
-
D. Baxter, M. S. Skolnick, A. Armitage, V. N. Astratov, D. M. Whittaker, T. A. Fisher, J. S. Roberts, D. J. Mowbray, and M. A. Kaliteevski, Phys. Rev. B 56, 10 032 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 10 032
-
-
Baxter, D.1
Skolnick, M.S.2
Armitage, A.3
Astratov, V.N.4
Whittaker, D.M.5
Fisher, T.A.6
Roberts, J.S.7
Mowbray, D.J.8
Kaliteevski, M.A.9
-
18
-
-
0030189172
-
-
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 449
-
-
Gérard, J.M.1
Barrier, D.2
Marzin, J.Y.3
Kuszelewicz, R.4
Manin, L.5
Costard, E.6
Thierry-Mieg, V.7
Rivera, T.8
-
19
-
-
0000858781
-
-
J. P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P. A. Knipp, and T. L. Reinecke, Phys. Rev. Lett. 78, 378 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 378
-
-
Reithmaier, J.P.1
Röhner, M.2
Zull, H.3
Schäfer, F.4
Forchel, A.5
Knipp, P.A.6
Reinecke, T.L.7
-
20
-
-
0031185683
-
-
M. Röhner, J. P. Reithmaier, A. Forchel, F. Schäfer, and H. Zull, Appl. Phys. Lett. 71, 488 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 488
-
-
Röhner, M.1
Reithmaier, J.P.2
Forchel, A.3
Schäfer, F.4
Zull, H.5
-
21
-
-
85037899230
-
-
The polarizations of the electromagnetic modes will not be considered in detail here. In case of the ground mode the two independent polarizations are degenerate with each other. Each of the two first-excited modes (1,0) and (0,1) is split into a doublet because of the different boundary conditions at the semiconductor-vacuum interface for the two polarizations. However, from the full calculations we find that this polarization splitting is rather small in the case of the present structures. For example, for a (Formula presented)-wide dot the splitting is 0.06 meV, for a (Formula presented)-wide dot it is 0.5 meV.
-
The polarizations of the electromagnetic modes will not be considered in detail here. In case of the ground mode the two independent polarizations are degenerate with each other. Each of the two first-excited modes (1,0) and (0,1) is split into a doublet because of the different boundary conditions at the semiconductor-vacuum interface for the two polarizations. However, from the full calculations we find that this polarization splitting is rather small in the case of the present structures. For example, for a (Formula presented)-wide dot the splitting is 0.06 meV, for a (Formula presented)-wide dot it is 0.5 meV.
-
-
-
-
22
-
-
85037888653
-
-
The in-plane dispersion of the exciton is given by the center-of-mass motion of the exciton, whose energy depends only weakly on the observation direction in comparison to the photon mode.
-
The in-plane dispersion of the exciton is given by the center-of-mass motion of the exciton, whose energy depends only weakly on the observation direction in comparison to the photon mode.
-
-
-
-
23
-
-
85037913994
-
-
The halfwidth of the photon-mode emission increases continuously with increasing polar angle. This increase can be attibuted to the decrease of reflectivity of the two Bragg reflectors with increasing (Formula presented)
-
The halfwidth of the photon-mode emission increases continuously with increasing polar angle. This increase can be attibuted to the decrease of reflectivity of the two Bragg reflectors with increasing (Formula presented)
-
-
-
-
24
-
-
0037842469
-
-
Addison-Wesley, Reading, MA
-
See, for example, E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, MA, 1974).
-
(1974)
Optics
-
-
Hecht, E.1
Zajac, A.2
-
25
-
-
85037899996
-
-
For diffraction of a plane wave at a square aperture, each point of the aperture is the origin of a spherical wave. The amplitude of each of these elementary waves is equal. In case of the photonic dots the amplitude of each of these elementary waves is given by the local electromagnetic field in the photonic dot.
-
For diffraction of a plane wave at a square aperture, each point of the aperture is the origin of a spherical wave. The amplitude of each of these elementary waves is equal. In case of the photonic dots the amplitude of each of these elementary waves is given by the local electromagnetic field in the photonic dot.
-
-
-
-
26
-
-
85037895436
-
-
For the higher-lying, closely spaced modes, in particular (2,2) and (3,1), the intensities have been determined from a lineshape analysis, for which the calculated mode energies have been used. For the spectral linewidth we have taken the values from other modes, which are located closely in energy.
-
For the higher-lying, closely spaced modes, in particular (2,2) and (3,1), the intensities have been determined from a lineshape analysis, for which the calculated mode energies have been used. For the spectral linewidth we have taken the values from other modes, which are located closely in energy.
-
-
-
-
27
-
-
85037886540
-
-
For different dot orientations the exciton luminescence is normalized to the same value first and then the emission intensities of the optical modes are compared with each other.
-
For different dot orientations the exciton luminescence is normalized to the same value first and then the emission intensities of the optical modes are compared with each other.
-
-
-
|