메뉴 건너뛰기




Volumn 74, Issue 17, 1995, Pages 3307-3311

Information exclusion principle for complementary observables

Author keywords

[No Author keywords available]

Indexed keywords


EID: 4243424153     PISSN: 00319007     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevLett.74.3307     Document Type: Review
Times cited : (82)

References (34)
  • 1
    • 0010146684 scopus 로고
    • The ability of Maxwell's demon to make such complete state determination leads to the physics of information erasure; see, e.g.
    • (1982) Int. J. Theor. Phys. , vol.21 , pp. 905
    • Bennett, C.H.1
  • 12
    • 84927467032 scopus 로고    scopus 로고
    • The logarithm base is left arbitrary throughout, corresponding to a choice of units. The choices of base 2 and base e correspond to units of bits and nats, respectively.
  • 14
    • 84927474460 scopus 로고    scopus 로고
    • For example, E may represent the signal states of a communication channel, the possible output states of an optical fiber for a given input state, or a uniform distribution over all possible density operators of the system. I(A|E) then represents, respectively, the average quantity of error-free data transmitted per signal, the information gained about the optical path length, or the information gained about the (completely unknown) state of the system, via a measurement of A.
  • 24
    • 84927505825 scopus 로고    scopus 로고
    • More rigorously, if A and B are degenerate, with maximum overlap c attained for eigenstates |a〉, |b〉 of A, B, respectively, let A¯ and B¯ denote any maximal self-adjoint extensions of A and B which preserve |a〉 and |b〉 as eigenstates. Then A¯ and B¯ are by definition nondegenerate with maximum overlap c¯=c of eigenstates, and hence satisfy Eq. 16. But I(A|E)≤I(A¯|E), I(B|E)≤I(B¯|E) ([c10], Eq. (3.155) ), and Eq. 16 follows.
  • 26
    • 0006747155 scopus 로고
    • A weaker bound, N+1log2N/N+1, follows via the entropic bound in
    • (1992) J. Phys. A , vol.25 , pp. L363
    • Ivanovic, I.D.1
  • 27
    • 84927466114 scopus 로고    scopus 로고
    • A tighter bound for Eq. 22 is 12log×det[Cov(X)CovP/(ℏ/2)2], where CovV denotes the covariance matrix 〈VVT〉-〈V〉 〈VT〉.
  • 33
    • 84927493379 scopus 로고    scopus 로고
    • The bound in Eq. 34 corresponds to the average spin direction lying halfway between two of the coordinate axes, with the two individual spin directions in the plane parallel (orthogonal) to the remaining axis for J1 (J2).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.