-
2
-
-
0000497019
-
-
K.M. Aoki, T. Akiyama, Y. Maki, and T. Watanabe, Phys. Rev. E 54, 874 (1996).PLEEE8
-
(1996)
Phys. Rev. E
, vol.54
, pp. 874
-
-
Aoki, K.M.1
Akiyama, T.2
Maki, Y.3
Watanabe, T.4
-
3
-
-
0004136345
-
-
edited by D. Bideau, A. Hansen, Elsevier, Amsterdam
-
Disorder and Granular Media, edited by D. Bideau and A. Hansen (Elsevier, Amsterdam, 1993).
-
(1993)
Disorder and Granular Media
-
-
-
4
-
-
0004285533
-
-
edited by A. Mehta, Springer-Verlag, New York
-
Granular Matter, edited by A. Mehta (Springer-Verlag, New York, 1994).
-
(1994)
Granular Matter
-
-
-
8
-
-
0031572627
-
-
K.M. Aoki, T. Akiyama, K. Yamamoto, and T. Yoshikawa, Europhys. Lett. 40, 159 (1997).EULEEJ
-
(1997)
Europhys. Lett.
, vol.40
, pp. 159
-
-
Aoki, K.M.1
Akiyama, T.2
Yamamoto, K.3
Yoshikawa, T.4
-
12
-
-
0030184151
-
-
T. Akiyama, K.M. Aoki, T. Iguchi, and K. Nishimoto, Chem. Eng. Sci. 51, 3551 (1996).CESCAC
-
(1996)
Chem. Eng. Sci.
, vol.51
, pp. 3551
-
-
Akiyama, T.1
Aoki, K.M.2
Iguchi, T.3
Nishimoto, K.4
-
15
-
-
85036239959
-
-
the case of thermal diffusivity, x stands for excess energy above the average in thermodynamic equilibrium: [formula presented]
-
In the case of thermal diffusivity, x stands for excess energy above the average in thermodynamic equilibrium: ΔE=E-〈Eeq〉.
-
-
-
-
18
-
-
85036388879
-
-
For thermal diffusivity near thermal equilibrium, the formula [formula presented] is generally used in molecular dynamics simulation instead of [formula presented]. The first [formula presented] assumes that the conservation of energy holds (see Appendix I of 14
-
For thermal diffusivity near thermal equilibrium, the formula αx=〈[x(t)ΔE(t)-x(0)ΔE(0)]2〉/2〈ΔE2〉t is generally used in molecular dynamics simulation instead of αx=〈[x(t)-x(0)]2ΔE(t)ΔE(0)〉/2〈ΔE2〉t. The first αx assumes that the conservation of energy holds (see Appendix I of 14).
-
-
-
-
19
-
-
85036385265
-
-
the case of momentum transfer [where [formula presented] stands for momentum with the coefficient [formula presented] being the momentum diffusivity (kinematic viscosity in fluids) in Eq. (1)], the time scale of change in momentum is closely related to the time scale of vibration, and [formula presented] does not have a linear relationship with time [formula presented]
-
In the case of momentum transfer [where X stands for momentum with the coefficient c being the momentum diffusivity (kinematic viscosity in fluids) in Eq. (1)], the time scale of change in momentum is closely related to the time scale of vibration, and 〈[x(t)-x(0)]2py(t)py(0)〉 does not have a linear relationship with time t.
-
-
-
|