-
1
-
-
0015858113
-
On finite limit sets for transformations on the unit interval
-
Metropolis N., Stein M.L., Stein P.R. On finite limit sets for transformations on the unit interval. J. Combin. Theory A. 15:1973;25-44.
-
(1973)
J. Combin. Theory A
, vol.15
, pp. 25-44
-
-
Metropolis, N.1
Stein, M.L.2
Stein, P.R.3
-
2
-
-
0000455199
-
Iteration of endomorphisms on the real axis and representation of numbers
-
Derrida B., Gervois A., Pomeau Y. Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincaré A. 29:1978;305-356.
-
(1978)
Ann. Inst. Henri Poincaré A
, vol.29
, pp. 305-356
-
-
Derrida, B.1
Gervois, A.2
Pomeau, Y.3
-
3
-
-
0001816458
-
Quantitative universality for a class of nonlinear transformations
-
Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19:1978;25-52.
-
(1978)
J. Stat. Phys.
, vol.19
, pp. 25-52
-
-
Feigenbaum, M.J.1
-
4
-
-
0347447535
-
The universal metric properties of nonlinear transformations
-
Feigenbaum M.J. The universal metric properties of nonlinear transformations. J. Stat. Phys. 21:1979;669-706.
-
(1979)
J. Stat. Phys.
, vol.21
, pp. 669-706
-
-
Feigenbaum, M.J.1
-
5
-
-
0003280145
-
Iterated maps on the interval as dynamical systems
-
A. Jaffe, & D. Ruelle. Boston: Birkhäuser
-
Collet P., Eckmann J.-P. Iterated maps on the interval as dynamical systems. Jaffe A., Ruelle D. Progress in Physics. vol. 1:1980;Birkhäuser, Boston.
-
(1980)
Progress in Physics
, vol.1
-
-
Collet, P.1
Eckmann, J.-P.2
-
7
-
-
0000760846
-
Universality behaviors and fractal dimensions associated with M -furcations
-
Chang S.-J., McCown J. Universality behaviors and fractal dimensions associated with. M -furcations Phys. Rev. A. 31:1985;3791-3801.
-
(1985)
Phys. Rev. A
, vol.31
, pp. 3791-3801
-
-
Chang, S.-J.1
Mccown, J.2
-
8
-
-
0005835273
-
A new global regularity of fractal dimensions on critical points of transitions to chaos
-
Peng S.-L., Cao K.-F. A new global regularity of fractal dimensions on critical points of transitions to chaos. Phys. Lett. A. 131:1988;261-264 Erratum Phys. Lett. A. 133:1988;543.
-
(1988)
Phys. Lett. A
, vol.131
, pp. 261-264
-
-
Peng, S.-L.1
Cao, K.-F.2
-
9
-
-
0005835273
-
-
Peng S.-L., Cao K.-F. A new global regularity of fractal dimensions on critical points of transitions to chaos. Phys. Lett. A. 131:1988;261-264 Erratum Phys. Lett. A. 133:1988;543.
-
(1988)
Erratum Phys. Lett. A
, vol.133
, pp. 543
-
-
-
10
-
-
0041632807
-
A new universality for fractal dimensions of Feigenbaum-type attractors
-
Cao K.-F., Liu R.-L., Peng S.-L. A new universality for fractal dimensions of Feigenbaum-type attractors. Phys. Lett. A. 136:1989;213-215.
-
(1989)
Phys. Lett. A
, vol.136
, pp. 213-215
-
-
Cao, K.-F.1
Liu, R.-L.2
Peng, S.-L.3
-
11
-
-
0005903715
-
Universal scaling of generalized dimensions on critical strange sets
-
Cao K.-F., Peng S.-L. Universal scaling of generalized dimensions on critical strange sets. J. Phys. A. 25:1992;589-599.
-
(1992)
J. Phys. A
, vol.25
, pp. 589-599
-
-
Cao, K.-F.1
Peng, S.-L.2
-
12
-
-
0035977348
-
General form of superuniversality for fractal dimensions in one-dimensional maps
-
Cao K.-F., Zhou Z., Gao W., Peng S.-L. General form of superuniversality for fractal dimensions in one-dimensional maps. Int. J. Mod. Phys. B. 15:2001;4183-4197.
-
(2001)
Int. J. Mod. Phys. B
, vol.15
, pp. 4183-4197
-
-
Cao, K.-F.1
Zhou, Z.2
Gao, W.3
Peng, S.-L.4
-
13
-
-
0005803069
-
Disorder versus order: Global multifractal relationship between topological entropies and universal convergence rates
-
Zhang X.-S., Liu X.-D., Kwek K.-H., Peng S.-L. Disorder versus order: global multifractal relationship between topological entropies and universal convergence rates. Phys. Lett. A. 211:1996;148-154.
-
(1996)
Phys. Lett. A
, vol.211
, pp. 148-154
-
-
Zhang, X.-S.1
Liu, X.-D.2
Kwek, K.-H.3
Peng, S.-L.4
-
14
-
-
0242325047
-
Devil's staircase of topological entropy and global metric regularity
-
Peng S.-L., Cao K.-F., Chen Z.-X. Devil's staircase of topological entropy and global metric regularity. Phys. Lett. A. 193:1994;437-443 Erratum Phys. Lett. A. 196:1995;378.
-
(1994)
Phys. Lett. A
, vol.193
, pp. 437-443
-
-
Peng, S.-L.1
Cao, K.-F.2
Chen, Z.-X.3
-
15
-
-
0242325047
-
-
Peng S.-L., Cao K.-F., Chen Z.-X. Devil's staircase of topological entropy and global metric regularity. Phys. Lett. A. 193:1994;437-443 Erratum Phys. Lett. A. 196:1995;378.
-
(1995)
Erratum Phys. Lett. A
, vol.196
, pp. 378
-
-
-
16
-
-
0000207220
-
Symbolic dynamics analysis of topological entropy and its multifractal structure
-
Chen Z.-X., Cao K.-F., Peng S.-L. Symbolic dynamics analysis of topological entropy and its multifractal structure. Phys. Rev. E. 51:1995;1983-1988.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 1983-1988
-
-
Chen, Z.-X.1
Cao, K.-F.2
Peng, S.-L.3
-
17
-
-
0000197953
-
Global metric regularity of the devil's staircase of topological entropy
-
Cao K.-F., Chen Z.-X., Peng S.-L. Global metric regularity of the devil's staircase of topological entropy. Phys. Rev. E. 51:1995;1989-1995.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 1989-1995
-
-
Cao, K.-F.1
Chen, Z.-X.2
Peng, S.-L.3
-
18
-
-
4243103413
-
Metric universality for the devil's staircase of topological entropy
-
Shi J.-X., Cao K.-F., Guo T.-L., Peng S.-L. Metric universality for the devil's staircase of topological entropy. Phys. Lett. A. 211:1996;25-28.
-
(1996)
Phys. Lett. A
, vol.211
, pp. 25-28
-
-
Shi, J.-X.1
Cao, K.-F.2
Guo, T.-L.3
Peng, S.-L.4
-
19
-
-
0001359624
-
Global scaling behaviors and chaotic measure characterized by the convergent rates of period-p-tupling bifurcations
-
Peng S.-L., Cao K.-F. Global scaling behaviors and chaotic measure characterized by the convergent rates of period-p-tupling bifurcations. Phys. Rev. E. 54:1996;3211-3220.
-
(1996)
Phys. Rev. E
, vol.54
, pp. 3211-3220
-
-
Peng, S.-L.1
Cao, K.-F.2
-
20
-
-
84956256298
-
Dimension, entropy and Liapunov exponents
-
Young L.-S. Dimension, entropy and Liapunov exponents. Ergod. Theory Dynam. Syst. 2:1982;109-124.
-
(1982)
Ergod. Theory Dynam. Syst.
, vol.2
, pp. 109-124
-
-
Young, L.-S.1
-
21
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
Eckmann J.-P., Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57:1985;617-656.
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617-656
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
22
-
-
4243178703
-
Connections between Hausdorff dimension and entropy for maps on the interval (Abstract)
-
September
-
Hofbauer F. Connections between Hausdorff dimension and entropy for maps on the interval (Abstract). The 7th Czech-Slovak Workshop on Discrete Dynamical Systems, September 2003. Available from: http://www.math.slu.cz/CSWDDS/2003/.
-
(2003)
The 7th Czech-slovak Workshop on Discrete Dynamical Systems
-
-
Hofbauer, F.1
-
23
-
-
0000848698
-
On iterated maps of the interval
-
J.C. Alexander. Berlin: Springer-Verlag. Dynamical Systems - Proceedings, University of Maryland 1986-87
-
Milnor J., Thurston W. On iterated maps of the interval. Alexander J.C. Dynamical Systems - Proceedings, University of Maryland 1986-87. Lecture notes in mathematics. vol. 1342:1988;465-563 Springer-Verlag, Berlin.
-
(1988)
Lecture Notes in Mathematics
, vol.1342
, pp. 465-563
-
-
Milnor, J.1
Thurston, W.2
-
24
-
-
0012643993
-
Applied symbolic dynamics and chaos
-
Singapore: World Scientific
-
Hao B.-L., Zheng W.-M. Applied symbolic dynamics and chaos. Directions in chaos. vol. 7:1998;86-93 World Scientific, Singapore.
-
(1998)
Directions in Chaos
, vol.7
, pp. 86-93
-
-
Hao, B.-L.1
Zheng, W.-M.2
-
25
-
-
0001376041
-
The ordering of critical periodic points in coordinate space by symbolic dynamics
-
Peng S.-L., Luo L.-S. The ordering of critical periodic points in coordinate space by symbolic dynamics. Phys. Lett. A. 153:1991;345-352.
-
(1991)
Phys. Lett. A
, vol.153
, pp. 345-352
-
-
Peng, S.-L.1
Luo, L.-S.2
-
26
-
-
0004227619
-
-
Boston: Academic Press Professional. Chapters 6 and 3
-
Barnsley M.F. Fractals everywhere. 2nd ed. 1993;Academic Press Professional, Boston. Chapters 6 and 3.
-
(1993)
Fractals Everywhere. 2nd Ed.
-
-
Barnsley, M.F.1
|