메뉴 건너뛰기




Volumn 23, Issue 2, 2005, Pages 551-562

Stability and bifurcation in a harmonic oscillator with delays

Author keywords

[No Author keywords available]

Indexed keywords

BIFURCATION (MATHEMATICS); CHAOS THEORY; COMPUTER SIMULATION; DELAY CIRCUITS; DIMENSIONAL STABILITY; ENGINEERING; FRACTALS; HARMONIC ANALYSIS; MATRIX ALGEBRA; NUMERICAL METHODS; SOLITONS;

EID: 4243051466     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2004.05.038     Document Type: Article
Times cited : (18)

References (14)
  • 2
    • 0000209631 scopus 로고
    • Discrete delay, distributed delay and stability switches
    • Cooke K.L., Grossman Z. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86:1982;592-627.
    • (1982) J. Math. Anal. Appl. , vol.86 , pp. 592-627
    • Cooke, K.L.1    Grossman, Z.2
  • 3
    • 0035866130 scopus 로고    scopus 로고
    • Stability and bifurcation for a delayed predator-prey model and the effect of diffusion
    • Faria T. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl. 254:2001;433-463.
    • (2001) J. Math. Anal. Appl. , vol.254 , pp. 433-463
    • Faria, T.1
  • 4
    • 0034693565 scopus 로고    scopus 로고
    • On a planar system modelling a neuron network with memory
    • Faria T. On a planar system modelling a neuron network with memory. J. Differen. Equat. 168:2000;129-149.
    • (2000) J. Differen. Equat. , vol.168 , pp. 129-149
    • Faria, T.1
  • 5
    • 0000840165 scopus 로고
    • Normal form for retarded functional differential equations and applications to Bogdanov-akens singularity
    • Faria T., Magalhães L.T. Normal form for retarded functional differential equations and applications to Bogdanov-akens singularity. J. Differen. Equat. 122:1995;201-224.
    • (1995) J. Differen. Equat. , vol.122 , pp. 201-224
    • Faria, T.1    Magalhães, L.T.2
  • 6
    • 0000840164 scopus 로고
    • Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation
    • Faria T., Magalhães L.T. Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differen. Equat. 122:1995;181-200.
    • (1995) J. Differen. Equat. , vol.122 , pp. 181-200
    • Faria, T.1    Magalhães, L.T.2
  • 10
    • 0035622326 scopus 로고    scopus 로고
    • Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays
    • Liao X., Chen G. Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. Int. J. Bifurcat. Chaos. 11:2001;2105-2121.
    • (2001) Int. J. Bifurcat. Chaos , vol.11 , pp. 2105-2121
    • Liao, X.1    Chen, G.2
  • 11
    • 1342264354 scopus 로고    scopus 로고
    • Stability and bifurcation of mutual system with time delay
    • Meng X., Wei J. Stability and bifurcation of mutual system with time delay. Chaos, Solitons & Fractals. 21:2004;729-740.
    • (2004) Chaos, Solitons & Fractals , vol.21 , pp. 729-740
    • Meng, X.1    Wei, J.2
  • 12
    • 0347130009 scopus 로고    scopus 로고
    • Stability and bifurcation in a neural network model with two delays
    • Wei J., Ruan S. Stability and bifurcation in a neural network model with two delays. Physica D. 130:1999;255-272.
    • (1999) Physica D , vol.130 , pp. 255-272
    • Wei, J.1    Ruan, S.2
  • 13
    • 0035507108 scopus 로고    scopus 로고
    • Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response
    • Xiao D., Ruan S. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differen. Equat. 176:2001;494-510.
    • (2001) J. Differen. Equat. , vol.176 , pp. 494-510
    • Xiao, D.1    Ruan, S.2
  • 14
    • 0347355137 scopus 로고    scopus 로고
    • Bifurcation analysis of a chemostat model with two distributed delays
    • Yuan S., Han M. Bifurcation analysis of a chemostat model with two distributed delays. Chaos, Solitons & Fractals. 20:2004;995-1004.
    • (2004) Chaos, Solitons & Fractals , vol.20 , pp. 995-1004
    • Yuan, S.1    Han, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.