-
1
-
-
42349103772
-
-
ALLAIRE, G. Shape Optimization by the Homogenization Method. Springer (2002). Zbl 0990.35001 MR 1859696
-
ALLAIRE, G. Shape Optimization by the Homogenization Method. Springer (2002). Zbl 0990.35001 MR 1859696
-
-
-
-
2
-
-
27644599007
-
Constrained envelope for a general class of design problems
-
Zbl 1062.49011 MR 2018097
-
ARANDA, E., & PEDREGAL, P. Constrained envelope for a general class of design problems. Disc. Cont. Dyn. Syst., Suppl. Vol., (2003), 30-41. Zbl 1062.49011 MR 2018097
-
(2003)
Disc. Cont. Dyn. Syst
, Issue.SUPPL. VOL
, pp. 30-41
-
-
ARANDA, E.1
PEDREGAL, P.2
-
3
-
-
36049007445
-
An optimal design problem in wave propagation
-
MR 2332468
-
BELLIDO, J. C., & DONOSO, A. An optimal design problem in wave propagation. J. Optim. Theory Appl. 134 (2007), 339-352. MR 2332468
-
(2007)
J. Optim. Theory Appl
, vol.134
, pp. 339-352
-
-
BELLIDO, J.C.1
DONOSO, A.2
-
4
-
-
42349091063
-
-
BENDSØE, MP., & SIGMUND, O. Topology Optimization: Theory, Methods and Aplications. Springer, Berlin (2003). Zbl 1059.74001 MR 2008524
-
BENDSØE, MP., & SIGMUND, O. Topology Optimization: Theory, Methods and Aplications. Springer, Berlin (2003). Zbl 1059.74001 MR 2008524
-
-
-
-
5
-
-
0035662154
-
Achieving arbitrarily large decay in the damped wave equation
-
Zbl 0983.35095 MR 1825863
-
CASTRO, C., & COX, S. Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001), 1748-1755. Zbl 0983.35095 MR 1825863
-
(2001)
SIAM J. Control Optim
, vol.39
, pp. 1748-1755
-
-
CASTRO, C.1
COX, S.2
-
6
-
-
4544294079
-
Control of the wave equation by time-dependent coefficient
-
Zbl 1073.35032 MR 1932956
-
CHAMBOLLE, A., & SANTOSA, F. Control of the wave equation by time-dependent coefficient. ESAIMCOCV 8 (2002) 375-392. Zbl 1073.35032 MR 1932956
-
(2002)
ESAIMCOCV
, vol.8
, pp. 375-392
-
-
CHAMBOLLE, A.1
SANTOSA, F.2
-
7
-
-
42349092499
-
-
CHERKAEV, A. Variational Methods for Structural Optimization. Springer, New York (2000). Zbl 0956.74001 MR 1763123
-
CHERKAEV, A. Variational Methods for Structural Optimization. Springer, New York (2000). Zbl 0956.74001 MR 1763123
-
-
-
-
8
-
-
42349096459
-
-
DACOROGNA, B. Direct Method in the Calculus of Variations. Springer (1989). Zbl 0703.49001 MR 0990890
-
DACOROGNA, B. Direct Method in the Calculus of Variations. Springer (1989). Zbl 0703.49001 MR 0990890
-
-
-
-
9
-
-
27644579466
-
Optimal design of 2-D conducting graded materials by minimizing quadratic functionals in the field
-
MR 2176301
-
DONOSO, A., & PEDREGAL, P. Optimal design of 2-D conducting graded materials by minimizing quadratic functionals in the field. Struct. Multidiscip. Optim. 30 (2005), 360-367. MR 2176301
-
(2005)
Struct. Multidiscip. Optim
, vol.30
, pp. 360-367
-
-
DONOSO, A.1
PEDREGAL, P.2
-
10
-
-
0032202097
-
Optimizing the rate of decay of solutions of the wave equation using genetic algorithms: A counterexample to the constant damping conjecture
-
Zbl 0999.35010 MR 1655858
-
FREITAS, P. Optimizing the rate of decay of solutions of the wave equation using genetic algorithms: a counterexample to the constant damping conjecture. SIAM J. Control Optim. 37 (1999), 376-387. Zbl 0999.35010 MR 1655858
-
(1999)
SIAM J. Control Optim
, vol.37
, pp. 376-387
-
-
FREITAS, P.1
-
11
-
-
0035520196
-
Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals
-
Zbl 1001.49002 MR 1867929
-
GRABOVSKY, Y. Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math. 27 (2001), 683-704. Zbl 1001.49002 MR 1867929
-
(2001)
Adv. Appl. Math
, vol.27
, pp. 683-704
-
-
GRABOVSKY, Y.1
-
12
-
-
0037444965
-
Optimal shape and position of the actuators for the stabilization of a string
-
Zbl pre05055493 MR 2020637
-
HEBRARD, P., & HENROT, A. Optimal shape and position of the actuators for the stabilization of a string. System Control Lett. 48 (2003), 199-209. Zbl pre05055493 MR 2020637
-
(2003)
System Control Lett
, vol.48
, pp. 199-209
-
-
HEBRARD, P.1
HENROT, A.2
-
13
-
-
42349099287
-
-
LIONS, J.-L., & MAGENES, E. Non-Homogeneous Boundary Value Problems and Applications. I, Springer (1972). Zbl 0223.35039 MR 0350177
-
LIONS, J.-L., & MAGENES, E. Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer (1972). Zbl 0223.35039 MR 0350177
-
-
-
-
14
-
-
3042652121
-
-
LIPTON, R., & VELO, A. P. Optimal design of gradient fields with applications to electrostatics. Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, XIV, D. Cioranescu and J.-L. Lions (eds.), North-Holland (2002), 509-532. Zbl 1080.78003 MR 1936008
-
LIPTON, R., & VELO, A. P. Optimal design of gradient fields with applications to electrostatics. Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Vol. XIV, D. Cioranescu and J.-L. Lions (eds.), North-Holland (2002), 509-532. Zbl 1080.78003 MR 1936008
-
-
-
-
15
-
-
42349107319
-
-
LURIE, K. A. Control in the coefficients of linear hyperbolic equations via spatio-temporal components. Homogenization, V. Berdichevsky et al. (eds.), World Sci., Singapore (1999), 285-315. Zbl 1035.78021 MR 1792692
-
LURIE, K. A. Control in the coefficients of linear hyperbolic equations via spatio-temporal components. Homogenization, V. Berdichevsky et al. (eds.), World Sci., Singapore (1999), 285-315. Zbl 1035.78021 MR 1792692
-
-
-
-
16
-
-
0000716455
-
The problem of the effective parameters of a mixture of two isotropic dielectrics distributed in space-time and the conservation law of wave impedance in one-dimensional wave propagation
-
Zbl 0915.35102 MR 1640028
-
LURIE, K. A. The problem of the effective parameters of a mixture of two isotropic dielectrics distributed in space-time and the conservation law of wave impedance in one-dimensional wave propagation. Proc. R. Soc. London A 454 (1998), 1767-1779. Zbl 0915.35102 MR 1640028
-
(1998)
Proc. R. Soc. London A
, vol.454
, pp. 1767-1779
-
-
LURIE, K.A.1
-
17
-
-
2942722247
-
-
m-closure of a set of isotropic dielectrics with respect to one-dimensional wave propagation. Wave Motion 40 (2004), 95-110. Zbl pre02202502 MR 2069904
-
m-closure of a set of isotropic dielectrics with respect to one-dimensional wave propagation. Wave Motion 40 (2004), 95-110. Zbl pre02202502 MR 2069904
-
-
-
-
19
-
-
39849088235
-
A spatio-temporal design problem for a damped wave equation
-
MR 2357775
-
MAESTRE, F., MÜNCH, A., & PEDREGAL, P. A spatio-temporal design problem for a damped wave equation. SIAM J. Appl. Math. 68 (2007), 109-132. MR 2357775
-
(2007)
SIAM J. Appl. Math
, vol.68
, pp. 109-132
-
-
MAESTRE, F.1
MÜNCH, A.2
PEDREGAL, P.3
-
20
-
-
42349114717
-
-
MILTON, G. W. The Theory of Composites. Cambridge Univ. Press (2002). Zbl 0993.74002 MR 1899805
-
MILTON, G. W. The Theory of Composites. Cambridge Univ. Press (2002). Zbl 0993.74002 MR 1899805
-
-
-
-
21
-
-
33748797939
-
Optimal design of the damping set for the stabilization of the wave equation
-
Zbl 1105.49005 MR 2287890
-
MÜNCH, A., PEDREGAL, P., & PERIAGO, F. Optimal design of the damping set for the stabilization of the wave equation. J. Differential Equations 231 (2006), 331-358. Zbl 1105.49005 MR 2287890
-
(2006)
J. Differential Equations
, vol.231
, pp. 331-358
-
-
MÜNCH, A.1
PEDREGAL, P.2
PERIAGO, F.3
-
22
-
-
0007009933
-
Contre-exemples pour divers problemes oil le controle intervient dans les coefficients
-
Zbl 0349.49005 MR 0438205
-
MURAT, F. Contre-exemples pour divers problemes oil le controle intervient dans les coefficients. Ann. Mat. Pura Appl. 112 (1977), 49-68. Zbl 0349.49005 MR 0438205
-
(1977)
Ann. Mat. Pura Appl
, vol.112
, pp. 49-68
-
-
MURAT, F.1
-
23
-
-
30844437297
-
Vector variational problems and applications to optimal design
-
Zbl 1089.49022 MR 2148849
-
PEDREGAL, P. Vector variational problems and applications to optimal design. ESAIM-COCV 15 (2005), 357-381. Zbl 1089.49022 MR 2148849
-
(2005)
ESAIM-COCV
, vol.15
, pp. 357-381
-
-
PEDREGAL, P.1
-
24
-
-
4944265251
-
Constrained quasiconvexification of the square of the gradient of the state in optimal design
-
Zbl 1086.49013 MR 2086039
-
PEDREGAL, P. Constrained quasiconvexification of the square of the gradient of the state in optimal design. Quart. Appl. Math. 62 (2004), 459-470. Zbl 1086.49013 MR 2086039
-
(2004)
Quart. Appl. Math
, vol.62
, pp. 459-470
-
-
PEDREGAL, P.1
-
25
-
-
27644540554
-
Optimal design in 2-D conductivity for quadratic functionals in the field
-
Warszawa, Kluwer , MR 2268907
-
PEDREGAL, P. Optimal design in 2-D conductivity for quadratic functionals in the field. Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials (Warszawa, 2003), Kluwer (2004), 229-246. MR 2268907
-
(2003)
Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials
, pp. 229-246
-
-
PEDREGAL, P.1
-
26
-
-
39849111137
-
Optimal design in two-dimensional conductivity for a general cost depending on the field
-
Zbl 1104.74052 MR 2276496
-
PEDREGAL, P. Optimal design in two-dimensional conductivity for a general cost depending on the field. Arch. Ration. Mech. Anal. 182 (2006), 367-385. Zbl 1104.74052 MR 2276496
-
(2006)
Arch. Ration. Mech. Anal
, vol.182
, pp. 367-385
-
-
PEDREGAL, P.1
-
27
-
-
42349114320
-
-
TARTAR, L. Remarks on optimal design problems. Calculus of Variations, Homogenization and Continuum Mechanics, G. Buttazzo et al. (eds.), World Sci., Singapore (1994), 279-296. Zbl 0884.49015 MR 1428706
-
TARTAR, L. Remarks on optimal design problems. Calculus of Variations, Homogenization and Continuum Mechanics, G. Buttazzo et al. (eds.), World Sci., Singapore (1994), 279-296. Zbl 0884.49015 MR 1428706
-
-
-
|