메뉴 건너뛰기




Volumn 21, Issue 2, 2008, Pages 356-377

Distribution of global measures of deviation between the empirical distribution function and its concave majorant

Author keywords

Brownian motion with parabolic drift; Central limit theorem; Empirical process; L k distance; Least concave majorant

Indexed keywords


EID: 42349091972     PISSN: 08949840     EISSN: 15729230     Source Type: Journal    
DOI: 10.1007/s10959-007-0103-0     Document Type: Article
Times cited : (19)

References (16)
  • 1
    • 0036622673 scopus 로고    scopus 로고
    • The least concave majorant of the empirical distribution function
    • Carolan, C.A.: The least concave majorant of the empirical distribution function. Can. J. Stat. 30, 317-328 (2002)
    • (2002) Can. J. Stat. , vol.30 , pp. 317-328
    • Carolan, C.A.1
  • 3
    • 0038308518 scopus 로고    scopus 로고
    • A Kolmogorov-type test for monotonicity of regression
    • Durot, C.: A Kolmogorov-type test for monotonicity of regression. Stat. Probab. Lett. 63, 425-433 (2003)
    • (2003) Stat. Probab. Lett. , vol.63 , pp. 425-433
    • Durot, C.1
  • 4
    • 0037334377 scopus 로고    scopus 로고
    • On the distance between the empirical process and its concave majorant in a monotone regression framework
    • Durot, C., Tocquet, A.S.: On the distance between the empirical process and its concave majorant in a monotone regression framework. Ann. Inst. H. Poincaré Probab. Stat. 39, 217-240 (2003)
    • (2003) Ann. Inst. H. Poincaré Probab. Stat. , vol.39 , pp. 217-240
    • Durot, C.1    Tocquet, A.S.2
  • 5
    • 0001641741 scopus 로고
    • The concave majorant of Brownian motion
    • 4
    • Groeneboom, P.: The concave majorant of Brownian motion. Ann. Probab. 11(4), 1016-1027 (1983)
    • (1983) Ann. Probab. , vol.11 , pp. 1016-1027
    • Groeneboom, P.1
  • 8
    • 0002842430 scopus 로고
    • Asymptotically minimax estimation of concave and convex distribution functions
    • Kiefer, J., Wolfowitz, J.: Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrsch. Verw. Geb. 34, 73-85 (1976)
    • (1976) Z. Wahrsch. Verw. Geb. , vol.34 , pp. 73-85
    • Kiefer, J.1    Wolfowitz, J.2
  • 9
    • 0000411204 scopus 로고
    • An approximation of partial sums of independent RV's and the sample DF
    • Kómlos, J., Major, P., Tusnády, G.: An approximation of partial sums of independent RV's and the sample DF. Z. Wahrsch. Verw. Geb. 32, 111-131 (1975)
    • (1975) Z. Wahrsch. Verw. Geb. , vol.32 , pp. 111-131
    • Kómlos, J.1    Major, P.2    Tusnády, G.3
  • 11
    • 30344443664 scopus 로고    scopus 로고
    • k -error of the Grenander estimator
    • 5
    • k -error of the Grenander estimator. Ann. Stat. 33(5), 2228-2255 (2005)
    • (2005) Ann. Stat. , vol.33 , pp. 2228-2255
    • Kulikov, V.N.1    Lopuhaä, H.P.2
  • 12
    • 33747172487 scopus 로고    scopus 로고
    • The limit process of the difference between the empirical distribution function and its concave majorant
    • 16
    • Kulikov, V.N., Lopuhaä, H.P.: The limit process of the difference between the empirical distribution function and its concave majorant. Stat. Probab. Lett. 76(16), 1781-1786 (2006)
    • (2006) Stat. Probab. Lett. , vol.76 , pp. 1781-1786
    • Kulikov, V.N.1    Lopuhaä, H.P.2
  • 14
    • 0010562514 scopus 로고
    • Asymptotically minimax estimators for distributions with increasing failure rate
    • 3
    • Wang, J.L.: Asymptotically minimax estimators for distributions with increasing failure rate. Ann. Stat. 14(3), 1113-1131 (1986)
    • (1986) Ann. Stat. , vol.14 , pp. 1113-1131
    • Wang, J.L.1
  • 15
    • 38149143495 scopus 로고
    • Estimators of a distribution function with increasing failure rate average
    • 3
    • Wang, J.L.: Estimators of a distribution function with increasing failure rate average. J. Stat. Plann. Inference 16(3), 415-427 (1987)
    • (1987) J. Stat. Plann. Inference , vol.16 , pp. 415-427
    • Wang, J.L.1
  • 16
    • 38149146723 scopus 로고
    • The limit distribution of the concave majorant of an empirical distribution function
    • Wang, Y.: The limit distribution of the concave majorant of an empirical distribution function. Stat. Probab. Lett. 20, 81-84 (1994)
    • (1994) Stat. Probab. Lett. , vol.20 , pp. 81-84
    • Wang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.