메뉴 건너뛰기




Volumn 6701, Issue , 2007, Pages

Modeling and estimation of wavelet coefficients using elliptically- contoured multivariate laplace vectors

Author keywords

[No Author keywords available]

Indexed keywords

MMSE ESTIMATOR; WAVELET COEFFICIENTS;

EID: 42149119443     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.736047     Document Type: Conference Paper
Times cited : (2)

References (47)
  • 1
    • 11844300380 scopus 로고    scopus 로고
    • Image denoising using bivariate a-stable distributions in the complex wavelet domain
    • January
    • A. Achim and E. E. Kuruoǧlu. Image denoising using bivariate a-stable distributions in the complex wavelet domain. IEEE Signal Processing Letters, 12(1):17-20, January 2005.
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.1 , pp. 17-20
    • Achim, A.1    Kuruoǧlu, E.E.2
  • 2
    • 0141787887 scopus 로고    scopus 로고
    • SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling
    • August
    • A. Achim, P. Tsakalides, and A. Bezerianos. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. on Geoscience and Remote Sensing, 41 (8) : 1773-1784, August 2003.
    • (2003) IEEE Trans. on Geoscience and Remote Sensing , vol.41 , Issue.8 , pp. 1773-1784
    • Achim, A.1    Tsakalides, P.2    Bezerianos, A.3
  • 4
    • 27844477304 scopus 로고    scopus 로고
    • Building robust wavelet estimators for multicomponent images using Stein's principle
    • November
    • A. Benazza-Benyahia and J.-C. Pesquet. Building robust wavelet estimators for multicomponent images using Stein's principle. IEEE Trans. on Signal Processing, 14(11):1814-1830, November 2005.
    • (2005) IEEE Trans. on Signal Processing , vol.14 , Issue.11 , pp. 1814-1830
    • Benazza-Benyahia, A.1    Pesquet, J.-C.2
  • 5
    • 33646771024 scopus 로고    scopus 로고
    • A closed-form nonparametric Bayesian estimator in the wavelet-domain of images using an approximate a-stable prior
    • September
    • L. Boubchir and M. J. Fadili. A closed-form nonparametric Bayesian estimator in the wavelet-domain of images using an approximate a-stable prior. Pattern Recognition Letters, 27(12): 1370-1382, September 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.12 , pp. 1370-1382
    • Boubchir, L.1    Fadili, M.J.2
  • 6
    • 0001298787 scopus 로고    scopus 로고
    • Incorporating information on neighboring coefficients into wavelet estimation
    • T. Cai and B. W. Silverman. Incorporating information on neighboring coefficients into wavelet estimation. Sankhya: Ind. J. Stat. B, 63:127-148, 2001.
    • (2001) Sankhya: Ind. J. Stat. B , vol.63 , pp. 127-148
    • Cai, T.1    Silverman, B.W.2
  • 7
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • September
    • S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing, 9 (9): 1532-1546, September 2000.
    • (2000) IEEE Trans. on Image Processing , vol.9 , Issue.9 , pp. 1532-1546
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 8
    • 0034259592 scopus 로고    scopus 로고
    • Spatially adaptive wavelet thresholding with context modelling for image denoising
    • S. G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context modelling for image denoising. IEEE Trans. on Image Processing, 9(9):1522-1531, 2000.
    • (2000) IEEE Trans. on Image Processing , vol.9 , Issue.9 , pp. 1522-1531
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 9
    • 0002352357 scopus 로고
    • Generalized incomplete Gamma functions with applications
    • M. A. Chaudhry and S. M. Zubair. Generalized incomplete Gamma functions with applications. J. Comput. Appl. Math, 55(1):99-124, 1994.
    • (1994) J. Comput. Appl. Math , vol.55 , Issue.1 , pp. 99-124
    • Chaudhry, M.A.1    Zubair, S.M.2
  • 11
    • 0031315608 scopus 로고    scopus 로고
    • Adaptive Bayesian wavelet shrinkage
    • December
    • H. Chipman, E. Kolaczyk, and R. McCulloch. Adaptive Bayesian wavelet shrinkage. J. Am. Stat. Assoc., 92(439): 1413-1421, December 1997.
    • (1997) J. Am. Stat. Assoc , vol.92 , Issue.439 , pp. 1413-1421
    • Chipman, H.1    Kolaczyk, E.2    McCulloch, R.3
  • 12
    • 10644256458 scopus 로고    scopus 로고
    • Multivariate statistical modeling for image denoising using wavelet transforms
    • January
    • D. Cho and T. D. Bui. Multivariate statistical modeling for image denoising using wavelet transforms. Signal Processing: Image Communications, 20(1):77-89, January 2005.
    • (2005) Signal Processing: Image Communications , vol.20 , Issue.1 , pp. 77-89
    • Cho, D.1    Bui, T.D.2
  • 13
    • 0001477056 scopus 로고    scopus 로고
    • Empirical Bayes estimation in wavelet nonparametric regression
    • P. Muller and B. Vidakovic, editors, Springer-Verlag
    • M. Clyde and E. I. George. Empirical Bayes estimation in wavelet nonparametric regression. In P. Muller and B. Vidakovic, editors, Bayesian Inference in Wavelet Based Models, pages 309-322. Springer-Verlag, 1999.
    • (1999) Bayesian Inference in Wavelet Based Models , pp. 309-322
    • Clyde, M.1    George, E.I.2
  • 14
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based signal processing using hidden Markov models
    • April
    • M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based signal processing using hidden Markov models. IEEE Trans. on Signal Processing, 46(4):886-902, April 1998.
    • (1998) IEEE Trans. on Signal Processing , vol.46 , Issue.4 , pp. 886-902
    • Crouse, M.S.1    Nowak, R.D.2    Baraniuk, R.G.3
  • 15
    • 33749584936 scopus 로고    scopus 로고
    • Generalized Wiener estimation algorithms based on a family of heavy-tailed distributions
    • G. Deng. Generalized Wiener estimation algorithms based on a family of heavy-tailed distributions. In Proc. IEEE Int. Conf. Image Processing (ICIP), 2005.
    • (2005) Proc. IEEE Int. Conf. Image Processing (ICIP)
    • Deng, G.1
  • 16
    • 33645837850 scopus 로고    scopus 로고
    • On the multivariate Laplace distribution
    • May
    • T. Eltoft, T. Kim, and T.-W. Lee. On the multivariate Laplace distribution. IEEE Signal Processing Letters, 13(5):300-303, May 2006.
    • (2006) IEEE Signal Processing Letters , vol.13 , Issue.5 , pp. 300-303
    • Eltoft, T.1    Kim, T.2    Lee, T.-W.3
  • 17
    • 13244268341 scopus 로고    scopus 로고
    • Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities
    • February
    • J. M. Fadili and L. Boubchir. Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Trans. on Image Processing, 14(2):231-240, February 2005.
    • (2005) IEEE Trans. on Image Processing , vol.14 , Issue.2 , pp. 231-240
    • Fadili, J.M.1    Boubchir, L.2
  • 18
    • 27644552178 scopus 로고    scopus 로고
    • Speech enhancement employing Laplacian-Gaussian mixture
    • September
    • S. Gazor and W. Zhang. Speech enhancement employing Laplacian-Gaussian mixture. IEEE Trans. on Signal Processing, 13(5):896-904, September 2005.
    • (2005) IEEE Trans. on Signal Processing , vol.13 , Issue.5 , pp. 896-904
    • Gazor, S.1    Zhang, W.2
  • 20
    • 0034250772 scopus 로고    scopus 로고
    • Wavelet thresholding via MDL for natural images
    • August
    • M. Hansen and B. Yu. Wavelet thresholding via MDL for natural images. IEEE Trans. Inform. Theory, 46(5): 1778-1788, August 2000.
    • (2000) IEEE Trans. Inform. Theory , vol.46 , Issue.5 , pp. 1778-1788
    • Hansen, M.1    Yu, B.2
  • 21
    • 0348223982 scopus 로고    scopus 로고
    • Sparse code shrinkage: Denoising of non-Gaussian data by maximum likelihood estimation
    • A. Hyvärinen. Sparse code shrinkage: Denoising of non-Gaussian data by maximum likelihood estimation. Neural Computation, 11:1739-1768, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1739-1768
    • Hyvärinen, A.1
  • 22
    • 0003218917 scopus 로고    scopus 로고
    • Image denoising by sparse code shrinkage
    • S. Haykin and B. Kosko, editors, IEEE Press
    • A. Hyvärinen, E. Oja, and P. Hoyer. Image denoising by sparse code shrinkage. In S. Haykin and B. Kosko, editors, Intelligent Signal Processing. IEEE Press, 2001.
    • (2001) Intelligent Signal Processing
    • Hyvärinen, A.1    Oja, E.2    Hoyer, P.3
  • 23
    • 1542573394 scopus 로고    scopus 로고
    • Empirical Bayes approach to improve wavelet thresholding for image noise reduction
    • June
    • M. Jansen and A. Bultheel. Empirical Bayes approach to improve wavelet thresholding for image noise reduction. J. of the Amer. Statist. Assoc. (JASA), 96(454):629-639, June 2001.
    • (2001) J. of the Amer. Statist. Assoc. (JASA) , vol.96 , Issue.454 , pp. 629-639
    • Jansen, M.1    Bultheel, A.2
  • 25
    • 18444410406 scopus 로고    scopus 로고
    • Empirical Bayes selection of wavelet thresholds
    • I. M. Johnstone and B. W. Silverman. Empirical Bayes selection of wavelet thresholds. Ann. Statist., 33(4):1700-1752, 2005.
    • (2005) Ann. Statist , vol.33 , Issue.4 , pp. 1700-1752
    • Johnstone, I.M.1    Silverman, B.W.2
  • 27
    • 0035510179 scopus 로고    scopus 로고
    • Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients
    • November
    • J. Liu and P. Moulin. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. on Image Processing, 10(11):1647-1658, November 2001.
    • (2001) IEEE Trans. on Image Processing , vol.10 , Issue.11 , pp. 1647-1658
    • Liu, J.1    Moulin, P.2
  • 28
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • July
    • S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal, and Machine Intel., 11 (7):674-693, July 1989.
    • (1989) IEEE Trans. Pattern Anal, and Machine Intel , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 29
    • 27644556974 scopus 로고    scopus 로고
    • Speech enhancement based on minimum mean-square error estimation and supergaussian priors
    • September
    • R. Martin. Speech enhancement based on minimum mean-square error estimation and supergaussian priors. IEEE Trans. on Speech and Audio Processing, 13(5):845-856, September 2005.
    • (2005) IEEE Trans. on Speech and Audio Processing , vol.13 , Issue.5 , pp. 845-856
    • Martin, R.1
  • 30
    • 30844456197 scopus 로고    scopus 로고
    • Improved denoising of images using modelling of a redundant contourlet transform
    • San Diego, July
    • B. Matalon, M. Elad, and M. Zibulevsky. Improved denoising of images using modelling of a redundant contourlet transform. In Wavelets XI, Proceedings of SPIE - volume 5914, San Diego, July 2005.
    • (2005) Wavelets XI, Proceedings of SPIE , vol.5914
    • Matalon, B.1    Elad, M.2    Zibulevsky, M.3
  • 31
    • 0342647438 scopus 로고    scopus 로고
    • Low-complexity image denoising based on statistical modeling of wavelet coefficients
    • December
    • M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Sig. Proc. Lett., 6(12):300-303, December 1999.
    • (1999) IEEE Sig. Proc. Lett , vol.6 , Issue.12 , pp. 300-303
    • Mihcak, M.K.1    Kozintsev, I.2    Ramchandran, K.3    Moulin, P.4
  • 32
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors
    • April
    • P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. Inform. Theory, 45(3):909-919, April 1999.
    • (1999) IEEE Trans. Inform. Theory , vol.45 , Issue.3 , pp. 909-919
    • Moulin, P.1    Liu, J.2
  • 33
    • 34247590200 scopus 로고    scopus 로고
    • The BKF Bayesian wavelet estimator
    • September
    • S. Nadarajah and S. Kotz. The BKF Bayesian wavelet estimator. Signal Processing, 87(9):2268-2271, September 2007.
    • (2007) Signal Processing , vol.87 , Issue.9 , pp. 2268-2271
    • Nadarajah, S.1    Kotz, S.2
  • 34
    • 33645816664 scopus 로고    scopus 로고
    • Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
    • L. Saul, Y. Weiss, and L. Bottou, editors, MIT Press
    • H.-J. Park and T.-W. Lee. Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1041-1048. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1041-1048
    • Park, H.-J.1    Lee, T.-W.2
  • 35
    • 31344451735 scopus 로고    scopus 로고
    • Estimating probability of presence of a signal of interest in multiresolution single- and multiband image denoising
    • March
    • A. Pizurica and W. Philips. Estimating probability of presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans. on Image Processing, 15(3):654-665, March 2006.
    • (2006) IEEE Trans. on Image Processing , vol.15 , Issue.3 , pp. 654-665
    • Pizurica, A.1    Philips, W.2
  • 36
    • 0036563492 scopus 로고    scopus 로고
    • A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising
    • May
    • A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy. A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans. on Image Processing, 11(5):545-557, May 2002.
    • (2002) IEEE Trans. on Image Processing , vol.11 , Issue.5 , pp. 545-557
    • Pizurica, A.1    Philips, W.2    Lemahieu, I.3    Acheroy, M.4
  • 37
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • November
    • J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. on Image Processing, 12(11): 1338-1351, November 2003.
    • (2003) IEEE Trans. on Image Processing , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.J.3    Simoncelli, E.P.4
  • 39
    • 42149097294 scopus 로고    scopus 로고
    • The estimation of spherically-contoured Laplace random vectors in additive white Gaussian noise
    • To appear
    • I. W. Selesnick. The estimation of spherically-contoured Laplace random vectors in additive white Gaussian noise. To appear.
    • Selesnick, I.W.1
  • 40
    • 78649809636 scopus 로고    scopus 로고
    • Laplace random vectors, Gaussian noise, and the generalized incomplete gamma function
    • Atlanta, October
    • I. W. Selesnick. Laplace random vectors, Gaussian noise, and the generalized incomplete gamma function. In Proc. IEEE Int. Conf. Image Processing (ICIP), Atlanta, October 2006.
    • (2006) Proc. IEEE Int. Conf. Image Processing (ICIP)
    • Selesnick, I.W.1
  • 41
    • 0036844073 scopus 로고    scopus 로고
    • Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
    • November
    • L. Sendur and I. W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing, 50(11):2744-2756, November 2002.
    • (2002) IEEE Trans. on Signal Processing , vol.50 , Issue.11 , pp. 2744-2756
    • Sendur, L.1    Selesnick, I.W.2
  • 42
    • 0037628133 scopus 로고    scopus 로고
    • Multivariate shrinkage functions for wavelet-based denoising
    • November
    • L. Sendur and I. W. Selesnick. Multivariate shrinkage functions for wavelet-based denoising. In Asilomar Conf. Sig., Sys. Comp., volume 1, pages 953-957, November 2002.
    • (2002) Asilomar Conf. Sig., Sys. Comp , vol.1 , pp. 953-957
    • Sendur, L.1    Selesnick, I.W.2
  • 43
    • 34249810653 scopus 로고    scopus 로고
    • An elliptically contoured exponential mixture model for wavelet based image denoising
    • July
    • F. Shi and I. W. Selesnick. An elliptically contoured exponential mixture model for wavelet based image denoising. Appl. Comput. Harmon. Anal., 23(1): 131-151, July 2007.
    • (2007) Appl. Comput. Harmon. Anal , vol.23 , Issue.1 , pp. 131-151
    • Shi, F.1    Selesnick, I.W.2
  • 44
    • 0033318388 scopus 로고    scopus 로고
    • Modelling the joint statistics of images in the wavelet domain
    • E. P. Simoncelli. Modelling the joint statistics of images in the wavelet domain. Proc. SPIE, 313(1):188-195, 1999.
    • (1999) Proc. SPIE , vol.313 , Issue.1 , pp. 188-195
    • Simoncelli, E.P.1
  • 46
    • 0034296141 scopus 로고    scopus 로고
    • P. Tsakalides, P. Reveliotis, and C. L. Nikias. Scalar quantization of heavy-tailed signals. IEE Vis. Image Signal Process., 147(5):475-484, October 2000.
    • P. Tsakalides, P. Reveliotis, and C. L. Nikias. Scalar quantization of heavy-tailed signals. IEE Vis. Image Signal Process., 147(5):475-484, October 2000.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.