-
4
-
-
0007140364
-
A new approach to nonlinear partial differential equations
-
He J.-H. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2 (1997) 230-235
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, pp. 230-235
-
-
He, J.-H.1
-
5
-
-
0000092673
-
Variational iteration method - a kind of non-linear analytical technique: some examples
-
He J.-H. Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34 (1999) 699-708
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.-H.1
-
6
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He J.-H. Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. 20 (2006) 1141-1199
-
(2006)
Int. J. Modern Phys.
, vol.20
, pp. 1141-1199
-
-
He, J.-H.1
-
10
-
-
0037440579
-
Homotopy perturbation method: a new nonlinear analytical technique
-
He J.-H. Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135 (2003) 73-79
-
(2003)
Appl. Math. Comput.
, vol.135
, pp. 73-79
-
-
He, J.-H.1
-
11
-
-
33746584753
-
Addendum: new interpretation of homotopy perturbation method
-
He J.-H. Addendum: new interpretation of homotopy perturbation method. Int. J. Modern Phys. 20 (2006) 2561-2568
-
(2006)
Int. J. Modern Phys.
, vol.20
, pp. 2561-2568
-
-
He, J.-H.1
-
12
-
-
0032672778
-
Homotopy perturbation technique
-
He J.-H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 178 (1999) 257-262
-
(1999)
Comput. Meth. Appl. Mech. Eng.
, vol.178
, pp. 257-262
-
-
He, J.-H.1
-
13
-
-
0037412198
-
An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude
-
Liao S.-J. An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude. Int. J. Nonlinear Mech. 38 (2003) 1173-1183
-
(2003)
Int. J. Nonlinear Mech.
, vol.38
, pp. 1173-1183
-
-
Liao, S.-J.1
-
15
-
-
0036489498
-
Modified Linstedt-Poincare methods for some non-linear oscillations. Part I: expansion of constant
-
He J.-H. Modified Linstedt-Poincare methods for some non-linear oscillations. Part I: expansion of constant. J. Non-linear Mech. 37 (2002) 309-314
-
(2002)
J. Non-linear Mech.
, vol.37
, pp. 309-314
-
-
He, J.-H.1
-
16
-
-
33846210009
-
1/3 force by He's modified Linstedt-Poincaré method
-
1/3 force by He's modified Linstedt-Poincaré method. J. Sound Vibr. 301 (2007) 415-419
-
(2007)
J. Sound Vibr.
, vol.301
, pp. 415-419
-
-
Öziş, T.1
Yildirim, A.2
-
18
-
-
35548983428
-
-
J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050.
-
J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050.
-
-
-
-
19
-
-
0023648211
-
Iteration procedure for determining approximate solutions to non-linear oscillator equations
-
Mickens R.E. Iteration procedure for determining approximate solutions to non-linear oscillator equations. J. Sound Vibr. 116 (1987) 185-187
-
(1987)
J. Sound Vibr.
, vol.116
, pp. 185-187
-
-
Mickens, R.E.1
-
20
-
-
33749265810
-
A classical iteration procedure valid for certain strongly nonlinear oscillators
-
Hu H., and Tang J.H. A classical iteration procedure valid for certain strongly nonlinear oscillators. J. Sound Vibr. 299 (2007) 397-402
-
(2007)
J. Sound Vibr.
, vol.299
, pp. 397-402
-
-
Hu, H.1
Tang, J.H.2
-
21
-
-
19944384579
-
A convolution integral method for certain strongly nonlinear oscillators
-
Hu H., and Tang J.H. A convolution integral method for certain strongly nonlinear oscillators. J. Sound Vibr. 285 (2005) 1235-1241
-
(2005)
J. Sound Vibr.
, vol.285
, pp. 1235-1241
-
-
Hu, H.1
Tang, J.H.2
-
22
-
-
24344480923
-
A generalized iteration procedure for calculating approximations to periodic solutions of "truly nonlinear oscillators"
-
Mickens R.E. A generalized iteration procedure for calculating approximations to periodic solutions of "truly nonlinear oscillators". J. Sound Vibr. 287 (2005) 1045-1051
-
(2005)
J. Sound Vibr.
, vol.287
, pp. 1045-1051
-
-
Mickens, R.E.1
-
23
-
-
0037058127
-
A modified Mickens procedure for certain non-linear oscillators
-
Lim C.W., and Wu B.S. A modified Mickens procedure for certain non-linear oscillators. J. Sound Vibr. 257 (2002) 202-206
-
(2002)
J. Sound Vibr.
, vol.257
, pp. 202-206
-
-
Lim, C.W.1
Wu, B.S.2
-
24
-
-
33644600306
-
1/3 force oscillators
-
1/3 force oscillators. J. Sound Vibr. 292 (2006) 964-968
-
(2006)
J. Sound Vibr.
, vol.292
, pp. 964-968
-
-
Mickens, R.E.1
-
25
-
-
33646517251
-
Solutions of nonlinear oscillators with fractional powers by an iterative procedure
-
Hu H. Solutions of nonlinear oscillators with fractional powers by an iterative procedure. J. Sound Vibr. 294 (2006) 608-614
-
(2006)
J. Sound Vibr.
, vol.294
, pp. 608-614
-
-
Hu, H.1
-
26
-
-
33745664224
-
A modified iteration perturbation method for some nonlinear oscillation problems
-
Marinca V., and Herinasu N. A modified iteration perturbation method for some nonlinear oscillation problems. Acta Mech. 184 (2006) 142-231
-
(2006)
Acta Mech.
, vol.184
, pp. 142-231
-
-
Marinca, V.1
Herinasu, N.2
-
27
-
-
33748424980
-
An analytical approximate technique for a class of strongly non-linear oscillators
-
Wu B.S., Sun W.P., and Lim C.W. An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Non-linear Mech. 41 (2006) 766-774
-
(2006)
Int. J. Non-linear Mech.
, vol.41
, pp. 766-774
-
-
Wu, B.S.1
Sun, W.P.2
Lim, C.W.3
-
28
-
-
0037412162
-
Analytical approximation to large-amplitude oscillation of a non-linear conservative system
-
Wu B.S., Lim C.W., and Ma Y.F. Analytical approximation to large-amplitude oscillation of a non-linear conservative system. Int. J. Non-linear Mech. 38 (2003) 1037-1043
-
(2003)
Int. J. Non-linear Mech.
, vol.38
, pp. 1037-1043
-
-
Wu, B.S.1
Lim, C.W.2
Ma, Y.F.3
-
29
-
-
0141882931
-
Large amplitude non-linear oscillations of a general conservative system
-
Wu B.S., and Lim C.W. Large amplitude non-linear oscillations of a general conservative system. Int. J. Non-linear Mech. 39 (2004) 859-870
-
(2004)
Int. J. Non-linear Mech.
, vol.39
, pp. 859-870
-
-
Wu, B.S.1
Lim, C.W.2
-
30
-
-
0035686567
-
A method for obtaining approximate analytic periods for a class of nonlinear oscillators
-
Wu B., and Li P. A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36 (2001) 167-176
-
(2001)
Meccanica
, vol.36
, pp. 167-176
-
-
Wu, B.1
Li, P.2
-
31
-
-
41949133648
-
-
J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Solitons Frac., in press.
-
J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Solitons Frac., in press.
-
-
-
-
34
-
-
0035976505
-
Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs
-
Mandelzweig V.B., and Tabakin F. Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141 (2001) 268-281
-
(2001)
Comput. Phys. Commun.
, vol.141
, pp. 268-281
-
-
Mandelzweig, V.B.1
Tabakin, F.2
-
35
-
-
0035879170
-
Numerical investigation of quasilinearization method in quantum mechanics
-
Krivec R., and Mandelzweig V.B. Numerical investigation of quasilinearization method in quantum mechanics. Comput. Phys. Commun. 138 (2001) 69-79
-
(2001)
Comput. Phys. Commun.
, vol.138
, pp. 69-79
-
-
Krivec, R.1
Mandelzweig, V.B.2
-
36
-
-
33750497264
-
Comparison of quasilinear and WKB approximations
-
Mandelzweig V.B. Comparison of quasilinear and WKB approximations. Ann. Phys. 321 (2006) 2810-2829
-
(2006)
Ann. Phys.
, vol.321
, pp. 2810-2829
-
-
Mandelzweig, V.B.1
-
42
-
-
15944389556
-
Improved Linstedt-Poicaré method for the solution of nonlinear problems
-
Amore P., and Aranda A. Improved Linstedt-Poicaré method for the solution of nonlinear problems. J. Sound Vibr. 283 (2005) 1115-1136
-
(2005)
J. Sound Vibr.
, vol.283
, pp. 1115-1136
-
-
Amore, P.1
Aranda, A.2
-
43
-
-
2942571550
-
High order analysis of nonlinear periodic differential equations
-
Amore P., and Lamas H.M. High order analysis of nonlinear periodic differential equations. Phys. Lett. A 327 (2004) 158-166
-
(2004)
Phys. Lett. A
, vol.327
, pp. 158-166
-
-
Amore, P.1
Lamas, H.M.2
-
44
-
-
1642616365
-
Presenting a new method for the solution of nonlinear problems
-
Amore P., and Aranda A. Presenting a new method for the solution of nonlinear problems. Phys. Lett. A 316 (2003) 218-225
-
(2003)
Phys. Lett. A
, vol.316
, pp. 218-225
-
-
Amore, P.1
Aranda, A.2
-
45
-
-
33751567742
-
Development of accurate solutions for a classical oscillator
-
Amore P., and Sanchez N.E. Development of accurate solutions for a classical oscillator. J. Sound Vibr. 283 (2007) 345-351
-
(2007)
J. Sound Vibr.
, vol.283
, pp. 345-351
-
-
Amore, P.1
Sanchez, N.E.2
-
46
-
-
19444376778
-
Comparison of alternative improved perturbative methods for nonlinear oscillations
-
Amore P., Raya A., and Fernández F.M. Comparison of alternative improved perturbative methods for nonlinear oscillations. Phys. Lett. A 340 (2005) 201-208
-
(2005)
Phys. Lett. A
, vol.340
, pp. 201-208
-
-
Amore, P.1
Raya, A.2
Fernández, F.M.3
-
47
-
-
0038394235
-
High-order variational calculation for the frequency of time-periodic solutions
-
Pelster A., Kleinert H., and Schanz M. High-order variational calculation for the frequency of time-periodic solutions. Phys. Rev. E 67 (2003) 016604-1/6
-
(2003)
Phys. Rev. E
, vol.67
-
-
Pelster, A.1
Kleinert, H.2
Schanz, M.3
-
48
-
-
0027911989
-
A perturbation technique that works even when the non-linearity is not small
-
Senator M., and Bapat C.N. A perturbation technique that works even when the non-linearity is not small. J. Sound Vibr. 164 (1993) 1-27
-
(1993)
J. Sound Vibr.
, vol.164
, pp. 1-27
-
-
Senator, M.1
Bapat, C.N.2
-
49
-
-
20444380770
-
A generalization of the Senator-Bapat method for certain strongly nonlinear oscillators
-
Wu B.S., Lim C.W., and Li P.S. A generalization of the Senator-Bapat method for certain strongly nonlinear oscillators. Phys. Lett. A 341 (2005) 164-169
-
(2005)
Phys. Lett. A
, vol.341
, pp. 164-169
-
-
Wu, B.S.1
Lim, C.W.2
Li, P.S.3
-
50
-
-
0038182679
-
Variational approach to the Lane-Emden equation
-
He J.-H. Variational approach to the Lane-Emden equation. Appl. Math. Comput. 143 (2003) 539-541
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 539-541
-
-
He, J.-H.1
-
51
-
-
0037844986
-
Variational approach to the sixth-order boundary value problems
-
He J.-H. Variational approach to the sixth-order boundary value problems. Appl. Math. Comput. 143 (2003) 537-538
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 537-538
-
-
He, J.-H.1
-
52
-
-
0037844992
-
Variational approach to the Thomas-Fermi equation
-
He J.-H. Variational approach to the Thomas-Fermi equation. Appl. Math. Comput. 143 (2003) 533-535
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 533-535
-
-
He, J.-H.1
-
53
-
-
0038182682
-
A Lagrangian for von Karman equations of large deflection problem of thin circular plate
-
He J.-H. A Lagrangian for von Karman equations of large deflection problem of thin circular plate. Appl. Math. Comput. 143 (2003) 543-549
-
(2003)
Appl. Math. Comput.
, vol.143
, pp. 543-549
-
-
He, J.-H.1
-
54
-
-
33846244156
-
Quantitative measurement of variational approximations
-
Kaup D.J., and Vogel T.K. Quantitative measurement of variational approximations. Phys. Lett. A 362 (2007) 289-297
-
(2007)
Phys. Lett. A
, vol.362
, pp. 289-297
-
-
Kaup, D.J.1
Vogel, T.K.2
-
55
-
-
0642303225
-
Accuracy of an approximate variational solution procedure for the nonlinear Schrödinger equation
-
Desaix M., Anderson D., and Lisak M. Accuracy of an approximate variational solution procedure for the nonlinear Schrödinger equation. Phys. Rev. A 40 (1989) 2441-2445
-
(1989)
Phys. Rev. A
, vol.40
, pp. 2441-2445
-
-
Desaix, M.1
Anderson, D.2
Lisak, M.3
-
56
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fract. 31 (2007) 1248-1255
-
(2007)
Chaos Solitons Fract.
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
57
-
-
27144467065
-
New applications of variational iteration method
-
Abdou M.A., and Soliman A.A. New applications of variational iteration method. Physica D 211 (2005) 1-8
-
(2005)
Physica D
, vol.211
, pp. 1-8
-
-
Abdou, M.A.1
Soliman, A.A.2
-
58
-
-
19144365030
-
Variational iteration method for solving Burger's and coupled Burger's equations
-
Abdou M.A., and Soliman A.A. Variational iteration method for solving Burger's and coupled Burger's equations. J. Comput. Appl. Math. 181 (2005) 245-251
-
(2005)
J. Comput. Appl. Math.
, vol.181
, pp. 245-251
-
-
Abdou, M.A.1
Soliman, A.A.2
-
59
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
He J.-H., and Wu X.-H. Construction of solitary solution and compacton-like solution by variational iteration method. Chaos Solitons Fract. 29 (2006) 108-113
-
(2006)
Chaos Solitons Fract.
, vol.29
, pp. 108-113
-
-
He, J.-H.1
Wu, X.-H.2
-
60
-
-
31444453811
-
The solution of nonlinear coagulation problem with mass loss
-
Abulwafa E.M., Abdou M.A., and Mahmoud A.A. The solution of nonlinear coagulation problem with mass loss. Chaos Solitons Fract. 29 (2006) 313-330
-
(2006)
Chaos Solitons Fract.
, vol.29
, pp. 313-330
-
-
Abulwafa, E.M.1
Abdou, M.A.2
Mahmoud, A.A.3
-
61
-
-
31444443560
-
A numerical simulation and explicit solutions of KdV-Burgers' and Lax's seventh-order KdV equations
-
Soliman A.A. A numerical simulation and explicit solutions of KdV-Burgers' and Lax's seventh-order KdV equations. Chaos Solitons Fract. 29 (2006) 294-302
-
(2006)
Chaos Solitons Fract.
, vol.29
, pp. 294-302
-
-
Soliman, A.A.1
-
62
-
-
33644968060
-
Variational theory for one-dimensional longitudinal beam dynamics
-
He J.-H. Variational theory for one-dimensional longitudinal beam dynamics. Phys. Lett. A 352 (2006) 276-277
-
(2006)
Phys. Lett. A
, vol.352
, pp. 276-277
-
-
He, J.-H.1
-
63
-
-
33845440898
-
Exact and numerical solitons with compact support for nonlinear K(m, p) equations by the variational iteration method
-
Inc M. Exact and numerical solitons with compact support for nonlinear K(m, p) equations by the variational iteration method. Physica A 375 (2007) 447-456
-
(2007)
Physica A
, vol.375
, pp. 447-456
-
-
Inc, M.1
-
64
-
-
0040184009
-
Variational iteration method for autonomous differential equations
-
He J.-H. Variational iteration method for autonomous differential equations. Appl. Math. Comput. 114 (2000) 115-123
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.-H.1
-
65
-
-
33748578650
-
Variational iteration method for one-dimensional nonlinear elasticity
-
Sweilam M.H., and Khader M.M. Variational iteration method for one-dimensional nonlinear elasticity. Chaos Solitons Fract. 32 (2007) 145-149
-
(2007)
Chaos Solitons Fract.
, vol.32
, pp. 145-149
-
-
Sweilam, M.H.1
Khader, M.M.2
-
66
-
-
24944474278
-
Application of He's variational iteration method to Helmholtz equation
-
Momani S., and Abuasad S. Application of He's variational iteration method to Helmholtz equation. Chaos Solitons Fract. 27 (2006) 1119-1123
-
(2006)
Chaos Solitons Fract.
, vol.27
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
67
-
-
0006996396
-
General use of the Lagrange multiplier in nonlinear mathematical physics
-
Nemat-Nasser S. (Ed), Pergamon Press, New York
-
Inokuti M., Sekine H., and Mura T. General use of the Lagrange multiplier in nonlinear mathematical physics. In: Nemat-Nasser S. (Ed). Variational Methods in the Mechanics of Solids (1978), Pergamon Press, New York 156-162
-
(1978)
Variational Methods in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Sekine, H.2
Mura, T.3
-
75
-
-
34250696383
-
On the convergence of He's variational iteration method
-
Tatari M., and Dehgham M. On the convergence of He's variational iteration method. J. Comput. Appl. Math. 207 (2007) 201-208
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 201-208
-
-
Tatari, M.1
Dehgham, M.2
-
77
-
-
0037461472
-
Analysis of nonlinear oscillations in systems having non-polynomial elastic terms
-
Mickens R.E. Analysis of nonlinear oscillations in systems having non-polynomial elastic terms. J. Sound Vibr. 255 (2002) 789-792
-
(2002)
J. Sound Vibr.
, vol.255
, pp. 789-792
-
-
Mickens, R.E.1
-
78
-
-
3242733163
-
A modified method of equivalent linearization that works even when the non-linearity is not small
-
Hu H. A modified method of equivalent linearization that works even when the non-linearity is not small. J. Sound Vibr. 276 (2004) 1145-1149
-
(2004)
J. Sound Vibr.
, vol.276
, pp. 1145-1149
-
-
Hu, H.1
-
79
-
-
34250663068
-
He's parameter-expanding methods for strongly nonlinear oscillators
-
Xu L. He's parameter-expanding methods for strongly nonlinear oscillators. J. Comput. Appl. Math. 207 (2007) 148-154
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 148-154
-
-
Xu, L.1
-
80
-
-
1642618653
-
A classical perturbation technique that works even when the linear part of restoring force is zero
-
Hu H. A classical perturbation technique that works even when the linear part of restoring force is zero. J. Sound Vibr. 271 (2004) 1175-1179
-
(2004)
J. Sound Vibr.
, vol.271
, pp. 1175-1179
-
-
Hu, H.1
-
81
-
-
0035850154
-
Mathematical and numerical study of the Duffing-harmonic oscillator
-
Mickens R.E. Mathematical and numerical study of the Duffing-harmonic oscillator. J. Sound Vibr. 244 (2001) 563-567
-
(2001)
J. Sound Vibr.
, vol.244
, pp. 563-567
-
-
Mickens, R.E.1
-
82
-
-
33646528864
-
Solution of a Duffing-harmonic oscillator by the method of harmonic balance
-
Hu H., and Tang J.H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vibr. 294 (2006) 637-639
-
(2006)
J. Sound Vibr.
, vol.294
, pp. 637-639
-
-
Hu, H.1
Tang, J.H.2
-
83
-
-
19944397130
-
Analytical study on a Duffing-harmonic oscillator
-
Tiwari S.B., Rao B.N., Swamy N.S., Sai K.S., and Nataraja H.R. Analytical study on a Duffing-harmonic oscillator. J. Sound Vibr. 285 (2005) 1217-1222
-
(2005)
J. Sound Vibr.
, vol.285
, pp. 1217-1222
-
-
Tiwari, S.B.1
Rao, B.N.2
Swamy, N.S.3
Sai, K.S.4
Nataraja, H.R.5
-
84
-
-
33748066633
-
Solutions of the Duffing-harmonic oscillator by an iteration procedure
-
Hu H. Solutions of the Duffing-harmonic oscillator by an iteration procedure. J. Sound Vibr. 298 (2006) 446-452
-
(2006)
J. Sound Vibr.
, vol.298
, pp. 446-452
-
-
Hu, H.1
-
85
-
-
0038294438
-
A new analytical approach to the Duffing-harmonic oscillator
-
Lim C.W., and Wu B.S. A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311 (2003) 365-373
-
(2003)
Phys. Lett. A
, vol.311
, pp. 365-373
-
-
Lim, C.W.1
Wu, B.S.2
-
86
-
-
33745979117
-
Higher accuracy analytical approximations to the Duffing oscillator
-
Lim C.W., Wu B.S., and Sun W.P. Higher accuracy analytical approximations to the Duffing oscillator. J. Sound Vibr. 296 (2006) 1039-1045
-
(2006)
J. Sound Vibr.
, vol.296
, pp. 1039-1045
-
-
Lim, C.W.1
Wu, B.S.2
Sun, W.P.3
-
87
-
-
4644353662
-
Comparison of two Linstedt-Poincaré-type perturbation methods
-
Hu H., and Xiong Z.G. Comparison of two Linstedt-Poincaré-type perturbation methods. J. Sound Vibr. 278 (2004) 437-444
-
(2004)
J. Sound Vibr.
, vol.278
, pp. 437-444
-
-
Hu, H.1
Xiong, Z.G.2
-
88
-
-
4243080805
-
Approximate period of nonlinear oscillators with discontinuities by modified Linstedt-Poincaré method
-
Liu H.-M. Approximate period of nonlinear oscillators with discontinuities by modified Linstedt-Poincaré method. Chaos Solitons Fract. 23 (2005) 577-579
-
(2005)
Chaos Solitons Fract.
, vol.23
, pp. 577-579
-
-
Liu, H.-M.1
-
91
-
-
0141905286
-
Harmonic balance based averaging: approximate realization of an asymptotic technique
-
Chatterjee A. Harmonic balance based averaging: approximate realization of an asymptotic technique. Nonlinear Dyn. 32 (2003) 323-343
-
(2003)
Nonlinear Dyn.
, vol.32
, pp. 323-343
-
-
Chatterjee, A.1
-
92
-
-
33749260869
-
Asymptotic representations of the period for the nonlinear oscillator
-
Beléndez A., Hernández A., Beléndez T., Neipp C., and Márquez A. Asymptotic representations of the period for the nonlinear oscillator. J. Sound Vibr. 299 (2007) 403-408
-
(2007)
J. Sound Vibr.
, vol.299
, pp. 403-408
-
-
Beléndez, A.1
Hernández, A.2
Beléndez, T.3
Neipp, C.4
Márquez, A.5
|