메뉴 건너뛰기




Volumn 29, Issue 2, 2008, Pages 195-198

Application of support vector machine to multi-geological-factor analysis

Author keywords

Artificial neural network; Gassiness evaluation; Multiple regression analysis; Parameter product decision; Support vector machine; Tight sandstones

Indexed keywords

DATA PROCESSING; NEURAL NETWORKS; POROSITY; REGRESSION ANALYSIS; SANDSTONE; SUPPORT VECTOR MACHINES;

EID: 41949126641     PISSN: 02532697     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (8)
  • 1
    • 41949095564 scopus 로고    scopus 로고
    • Application of artificial neural network and multiple regression analysis to optimization of exploration prospects
    • Shi Guangren. Zhang Guangya, Shi Xiaofei. Application of artificial neural network and multiple regression analysis to optimization of exploration prospects [J]. Acta Petrolei Sinica, 2002, 23 (5): 19-22.
    • (2002) Acta Petrolei Sinica , vol.23 , Issue.5 , pp. 19-22
    • Shi, G.1    Zhang, G.2    Shi, X.3
  • 2
    • 2342655845 scopus 로고    scopus 로고
    • The use of artificial neural network analysis and multiple regression for trap quality evaluation: A case study of the Northern Kuqa Depression of Tarim Basin in western China
    • Shi Guangren, Zhou Xingxi, Zhang Guangya, et al. The use of artificial neural network analysis and multiple regression for trap quality evaluation: A case study of the Northern Kuqa Depression of Tarim Basin in western China [J]. Marine and Petroleum Geology, 2004, 21 (3): 411-420.
    • (2004) Marine and Petroleum Geology , vol.21 , Issue.3 , pp. 411-420
    • Shi, G.1    Zhou, X.2    Zhang, G.3
  • 3
    • 41949091681 scopus 로고    scopus 로고
    • Gassiness evaluation of gas-bearing layers in tight sandslones
    • Chen Keyong, Zhang Shaonan, Ding Xiaoqi. et al. Gassiness evaluation of gas-bearing layers in tight sandslones [J]. Journal of Oil and Gas Technology, 2006, 28 (4): 65-68.
    • (2006) Journal of Oil and Gas Technology , vol.28 , Issue.4 , pp. 65-68
    • Chen, K.1    Zhang, S.2    Ding, X.3
  • 5
    • 0003450542 scopus 로고    scopus 로고
    • Zhang X.(transl.), Beijing: Tsinghua University Press
    • Vapnik V N. The nature of statistical learning theory [M]. Translated by Zhang Xuegong. Beijing: Tsinghua University Press, 2000, 85-205.
    • (2000) The Nature of Statistical Learning Theory , pp. 85-205
    • Vapnik, V.N.1
  • 6
    • 0003798635 scopus 로고    scopus 로고
    • Li G., Wang M. and Zeng H.(transl.), Beijing: Publishing House of Electronics Industry
    • Cristianini N, Shawe-Taylor J. An introduction to support vector machines [M]. Translated by Li Guozheng, Wang Meng, Zeng Huajun. Beijing: Publishing House of Electronics Industry, 2004: 8-149.
    • (2004) An Introduction to Support Vector Machines , pp. 8-149
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 7
    • 41949132526 scopus 로고    scopus 로고
    • On support vector machines method to identify oil and gas zone with logging and mudlog information
    • Yang Bin, Kuang Lichun. Sun Zhongchun, et al. On support vector machines method to identify oil and gas zone with logging and mudlog information [J]. Well Logging Technology, 2005, 29 (6): 511-514.
    • (2005) Well Logging Technology , vol.29 , Issue.6 , pp. 511-514
    • Yang, B.1    Kuang, L.2    Sun, Z.3
  • 8
    • 34347215845 scopus 로고    scopus 로고
    • Failure analysis of drill stem based on support vector machine and cluster analysis theory
    • Yan Tie, Bi Xueliang, Wang Changjiang. Failure analysis of drill stem based on support vector machine and cluster analysis theory [J]. Acta Petrolei Sinica, 2007, 28 (3): 135-140.
    • (2007) Acta Petrolei Sinica , vol.28 , Issue.3 , pp. 135-140
    • Yan, T.1    Bi, X.2    Wang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.