메뉴 건너뛰기




Volumn 199, Issue 1, 2008, Pages 315-333

Markov chain network training and conservation law approximations: Linking microscopic and macroscopic models for evolution

Author keywords

Complex dynamic systems; Conservation law approximations; Markov chain approximation method; Neural networks; Training dynamics

Indexed keywords

APPROXIMATION THEORY; DYNAMICAL SYSTEMS; MARKOV PROCESSES;

EID: 41949115398     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2007.09.063     Document Type: Article
Times cited : (13)

References (37)
  • 2
    • 0035251340 scopus 로고    scopus 로고
    • Learning algorithm retrieval process for the multiple classes random neural network model
    • Aguilar J. Learning algorithm retrieval process for the multiple classes random neural network model. Neural Process. Lett. 13 (2001) 81-91
    • (2001) Neural Process. Lett. , vol.13 , pp. 81-91
    • Aguilar, J.1
  • 3
    • 0034552955 scopus 로고    scopus 로고
    • Dynamic observers - a neural net approach
    • Ahmed M.S., and Riyaz S.H. Dynamic observers - a neural net approach. J. Intell. Fuzzy Syst. 9 (2000) 113-127
    • (2000) J. Intell. Fuzzy Syst. , vol.9 , pp. 113-127
    • Ahmed, M.S.1    Riyaz, S.H.2
  • 4
    • 0030196717 scopus 로고    scopus 로고
    • Adaptive-critic-based neural networks for aircraft optimal control
    • Balakrishnan S.N., and Biega V. Adaptive-critic-based neural networks for aircraft optimal control. J. Guid. Control Dynam. 19 (1996) 893-989
    • (1996) J. Guid. Control Dynam. , vol.19 , pp. 893-989
    • Balakrishnan, S.N.1    Biega, V.2
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 (1993) 930-945
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 7
    • 0033340953 scopus 로고    scopus 로고
    • Issues in the application of neural networks for tracking based on inverse control
    • Cabrera J.B.D., and Narendra K.S. Issues in the application of neural networks for tracking based on inverse control. IEEE Trans. Autom. Contr. 44 (1999) 2007-2027
    • (1999) IEEE Trans. Autom. Contr. , vol.44 , pp. 2007-2027
    • Cabrera, J.B.D.1    Narendra, K.S.2
  • 8
    • 0034206077 scopus 로고    scopus 로고
    • A comparison between the Tikhonov and the Bayesian approaches to calculate regularisation matrices
    • Catala A., and Angulo C. A comparison between the Tikhonov and the Bayesian approaches to calculate regularisation matrices. Neural Process. Lett. 11 (2000) 185-195
    • (2000) Neural Process. Lett. , vol.11 , pp. 185-195
    • Catala, A.1    Angulo, C.2
  • 9
    • 0012269676 scopus 로고
    • Godel's theorem and information
    • Chaitin G.J. Godel's theorem and information. Int. J. Theor. Phys. 22 (1982) 941-954
    • (1982) Int. J. Theor. Phys. , vol.22 , pp. 941-954
    • Chaitin, G.J.1
  • 10
    • 32344435789 scopus 로고    scopus 로고
    • Non-linear coupled CNN models for multiscale image analysis
    • Corinto F., Biey M., and Gilli M. Non-linear coupled CNN models for multiscale image analysis. Int. J. Circuit Theory Appl. 34 1 (2006) 77-88
    • (2006) Int. J. Circuit Theory Appl. , vol.34 , Issue.1 , pp. 77-88
    • Corinto, F.1    Biey, M.2    Gilli, M.3
  • 11
    • 0033075788 scopus 로고    scopus 로고
    • Initialization of supervised training for parametric estimation
    • Costa P., and Larzabal P. Initialization of supervised training for parametric estimation. Neural Process. Lett. 9 (1999) 53-61
    • (1999) Neural Process. Lett. , vol.9 , pp. 53-61
    • Costa, P.1    Larzabal, P.2
  • 13
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • Cybenko G. Approximation by superposition of sigmoidal functions. MCSS 2 (1989) 303-314
    • (1989) MCSS , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 27744563916 scopus 로고    scopus 로고
    • On approximate learning by multi-layered feedforward circuits
    • DasGupta B., and Hammer B. On approximate learning by multi-layered feedforward circuits. Theor. Comput. Sci. 348 1 (2005) 95-127
    • (2005) Theor. Comput. Sci. , vol.348 , Issue.1 , pp. 95-127
    • DasGupta, B.1    Hammer, B.2
  • 15
    • 0033743851 scopus 로고    scopus 로고
    • Stabilizing and robustifying the learning mechanisms of ANNs in control engineering applications
    • Efe M.O., and Kaynak O. Stabilizing and robustifying the learning mechanisms of ANNs in control engineering applications. Int. J. Intell. Syst. 15 (2000) 365-388
    • (2000) Int. J. Intell. Syst. , vol.15 , pp. 365-388
    • Efe, M.O.1    Kaynak, O.2
  • 16
    • 0035151226 scopus 로고    scopus 로고
    • ANN approach to sorption hysteresis within a coupled hydro-thermo-mechanical FE analysis
    • Gawin D., Lefik M., and Schrefler B.A. ANN approach to sorption hysteresis within a coupled hydro-thermo-mechanical FE analysis. Int. J. Numer. Method Eng. 50 (2001) 299-323
    • (2001) Int. J. Numer. Method Eng. , vol.50 , pp. 299-323
    • Gawin, D.1    Lefik, M.2    Schrefler, B.A.3
  • 18
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multi-layer feedforward networks are universal approximators. Neural Network 2 (1989) 359-366
    • (1989) Neural Network , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0027556823 scopus 로고
    • Control of nonlinear dynamical systems using neural networks. Part I
    • Levin A.U., and Narendra K.S. Control of nonlinear dynamical systems using neural networks. Part I. IEEE Trans. Neural Network 4 (1993) 192-206
    • (1993) IEEE Trans. Neural Network , vol.4 , pp. 192-206
    • Levin, A.U.1    Narendra, K.S.2
  • 21
    • 0029754433 scopus 로고    scopus 로고
    • Control of nonlinear dynamical systems using neural networks. Part II
    • Levin A.U., and Narendra K.S. Control of nonlinear dynamical systems using neural networks. Part II. IEEE Trans. Neural Network 7 (1996) 30-42
    • (1996) IEEE Trans. Neural Network , vol.7 , pp. 30-42
    • Levin, A.U.1    Narendra, K.S.2
  • 22
    • 0033353291 scopus 로고    scopus 로고
    • A recurrent neural network for N-stage optimal control problems
    • Liao L.-Z. A recurrent neural network for N-stage optimal control problems. Neural Process. Lett. 10 (1999) 195-200
    • (1999) Neural Process. Lett. , vol.10 , pp. 195-200
    • Liao, L.-Z.1
  • 23
    • 0030720552 scopus 로고    scopus 로고
    • R.V.N. Melnik, A hierarchy of hyperbolic macrodynamic equations as a model for network training, in: Proceedings of the IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997, p. 322.
    • R.V.N. Melnik, A hierarchy of hyperbolic macrodynamic equations as a model for network training, in: Proceedings of the IEEE International Symposium on Information Theory, Ulm, Germany, June 29-July 4, 1997, p. 322.
  • 24
    • 0031108506 scopus 로고    scopus 로고
    • On consistent regularities of control and value functions
    • Melnik R.V.N. On consistent regularities of control and value functions. Numer. Funct. Anal. Optim. 18 (1997) 401-426
    • (1997) Numer. Funct. Anal. Optim. , vol.18 , pp. 401-426
    • Melnik, R.V.N.1
  • 25
    • 4644323844 scopus 로고    scopus 로고
    • Dynamic system evolution and Markov chain approximation
    • Melnik R.V.N. Dynamic system evolution and Markov chain approximation. Discr. Dynam. Nat. Soc. 2 (1998) 7-39
    • (1998) Discr. Dynam. Nat. Soc. , vol.2 , pp. 7-39
    • Melnik, R.V.N.1
  • 26
    • 4644345469 scopus 로고    scopus 로고
    • Deterministic and stochastic dynamics with hyperbolic HJB-type equations
    • Melnik R.V.N. Deterministic and stochastic dynamics with hyperbolic HJB-type equations. Dynam. Contin. Discr. Impul. Syst. Ser. A: Math. Anal. 10 3 (2003) 317-330
    • (2003) Dynam. Contin. Discr. Impul. Syst. Ser. A: Math. Anal. , vol.10 , Issue.3 , pp. 317-330
    • Melnik, R.V.N.1
  • 28
    • 0030269757 scopus 로고    scopus 로고
    • Neural networks for control: theory and practice
    • Narendra K.S. Neural networks for control: theory and practice. Proc. IEEE 84 (1996) 1385-1406
    • (1996) Proc. IEEE , vol.84 , pp. 1385-1406
    • Narendra, K.S.1
  • 29
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K.S., and Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Network 1 (1990) 4-27
    • (1990) IEEE Trans. Neural Network , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 30
    • 0034262450 scopus 로고    scopus 로고
    • Adaptive control of discrete-time systems using multiple models
    • Narendra K.S., and Xiang C. Adaptive control of discrete-time systems using multiple models. IEEE Trans. Autom. Contr. 45 (2000) 1669-1686
    • (2000) IEEE Trans. Autom. Contr. , vol.45 , pp. 1669-1686
    • Narendra, K.S.1    Xiang, C.2
  • 32
    • 0029032236 scopus 로고
    • Properties of block feedback neural networks
    • Santini S., and Del Bimbo A. Properties of block feedback neural networks. Neural Network 8 4 (1995) 579-596
    • (1995) Neural Network , vol.8 , Issue.4 , pp. 579-596
    • Santini, S.1    Del Bimbo, A.2
  • 33
    • 0033318210 scopus 로고    scopus 로고
    • A model for the dynamic interaction between evolution and learning
    • Sendhoff B., and Kreutz M. A model for the dynamic interaction between evolution and learning. Neural Process. Lett. 10 (1999) 181-193
    • (1999) Neural Process. Lett. , vol.10 , pp. 181-193
    • Sendhoff, B.1    Kreutz, M.2
  • 34
    • 0032427442 scopus 로고    scopus 로고
    • Computational neural network and the rational design of polymeric materials
    • Ulmer II C.W., et al. Computational neural network and the rational design of polymeric materials. Comput. Theor. Polym. Sci. 8 (1998) 311-321
    • (1998) Comput. Theor. Polym. Sci. , vol.8 , pp. 311-321
    • Ulmer II, C.W.1
  • 36
    • 0032031419 scopus 로고    scopus 로고
    • Prediction of polymer quality in batch polymerisation reactions using robust neural networks
    • Zhang J., et al. Prediction of polymer quality in batch polymerisation reactions using robust neural networks. Chem. Eng. J. 69 (1998) 135-143
    • (1998) Chem. Eng. J. , vol.69 , pp. 135-143
    • Zhang, J.1
  • 37
    • 0031248086 scopus 로고    scopus 로고
    • Neural-based direct adaptive control for a class of general nonlinear systems
    • Zhang T., Ge S.S., and Hang C.C. Neural-based direct adaptive control for a class of general nonlinear systems. Int. J. Syst. Sci. 28 (1997) 1011-1020
    • (1997) Int. J. Syst. Sci. , vol.28 , pp. 1011-1020
    • Zhang, T.1    Ge, S.S.2    Hang, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.