-
1
-
-
0000487641
-
New ideas for proving convergence of decomposition methods. omput
-
Abbaoui, K. and Y. Cherruault, 1996a. New ideas for proving convergence of decomposition methods. omput. Math. Appl., 29 (7): 103-108.
-
(1996)
Math. Appl
, vol.29
, Issue.7
, pp. 103-108
-
-
Abbaoui, K.1
Cherruault, Y.2
-
2
-
-
43949159125
-
Convergence of Adomian's method applied to differential equations
-
Abbaoui, K. and Y. Cherruault, 1996b. Convergence of Adomian's method applied to differential equations. Comput. Math. Appl., 28 (5): 103-109.
-
(1996)
Comput. Math. Appl
, vol.28
, Issue.5
, pp. 103-109
-
-
Abbaoui, K.1
Cherruault, Y.2
-
3
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian, G., 1988. A review of the decomposition method in applied mathematics. J. Math. Anal. Applied, 135: 501-544.
-
(1988)
J. Math. Anal. Applied
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
6
-
-
0001100804
-
Padé approximants algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domian
-
Boyd, J., 1997. Padé approximants algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domian. Comput. Phys., 11 (3): 299-303.
-
(1997)
Comput. Phys
, vol.11
, Issue.3
, pp. 299-303
-
-
Boyd, J.1
-
8
-
-
84970868898
-
Convergence of Adomian's method
-
Cherruault, Y., 1989. Convergence of Adomian's method. Kybernetes, 18: 31-38.
-
(1989)
Kybernetes
, vol.18
, pp. 31-38
-
-
Cherruault, Y.1
-
9
-
-
0000395259
-
Decomposition methods: A new proof of convergence
-
Cherruault, Y. and G. Adomian, 1993. Decomposition methods: A new proof of convergence. Math. Comput. Modelling, 18: 103-106.
-
(1993)
Math. Comput. Modelling
, vol.18
, pp. 103-106
-
-
Cherruault, Y.1
Adomian, G.2
-
10
-
-
0041384356
-
Chaotic dynamics of the fractional Lorenz system
-
Grigorenko, I. and E. Grigorenko, 2003. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett., 91 (3): 034101-034104.
-
(2003)
Phys. Rev. Lett
, vol.91
, Issue.3
, pp. 034101-034104
-
-
Grigorenko, I.1
Grigorenko, E.2
-
11
-
-
0007042083
-
Nonlinear oscillation with fractional derivative and its applications
-
Dalian, China, pp
-
He, J.H., 1998a. Nonlinear oscillation with fractional derivative and its applications. International Conference on Vibrating Engineering'98, Dalian, China, pp: 288-291.
-
(1998)
International Conference on Vibrating Engineering'98
, pp. 288-291
-
-
He, J.H.1
-
12
-
-
0032308350
-
Approximate solution of non linear differential equations with convolution product nonlinearities
-
He, J.H., 1998b. Approximate solution of non linear differential equations with convolution product nonlinearities. Comput Meth. Applied Mech. Eng., 167: 69-73.
-
(1998)
Comput Meth. Applied Mech. Eng
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
13
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He, J.H., 1998c. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Meth. Applied Mech. Eng., 167: 57-68.
-
(1998)
Comput Meth. Applied Mech. Eng
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
14
-
-
0000092673
-
Variational iteration method-a kind of nonlinear analytical technique: Some examples
-
He, J.H., 1999. Variational iteration method-a kind of nonlinear analytical technique: Some examples. Int. J. Nonlin. Mech., 34: 699-708.
-
(1999)
Int. J. Nonlin. Mech
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
15
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential systems
-
He, J.H., 2000. Variational iteration method for autonomous ordinary differential systems. Applied Math. Comput., 114 (4-5): 115-123.
-
(2000)
Applied Math. Comput
, vol.114
, Issue.4-5
, pp. 115-123
-
-
He, J.H.1
-
16
-
-
10244263652
-
An iteration formulation for normalized diode characteristics
-
He, J.H., Y.Q. Wan and Q. Guo, 2004. An iteration formulation for normalized diode characteristics. Int. J. Circuit Theor. Applied, 32 (6): 629-632.
-
(2004)
Int. J. Circuit Theor. Applied
, vol.32
, Issue.6
, pp. 629-632
-
-
He, J.H.1
Wan, Y.Q.2
Guo, Q.3
-
17
-
-
0001983732
-
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics
-
Carpinteri, A. and F. Mainardi Eds, Springer-Verlag, New York, pp
-
Mainardi, F., 1997. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Carpinteri, A. and F. Mainardi (Eds.). Springer-Verlag, New York, pp: 291-348.
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
18
-
-
7444228191
-
Analytical approximate solutions of nonlinear oscillators by the modified decomposition method
-
Momani, S., 2004. Analytical approximate solutions of nonlinear oscillators by the modified decomposition method. Int. J. Modern Phys. C., 15 (7): 967-979.
-
(2004)
Int. J. Modern Phys. C
, vol.15
, Issue.7
, pp. 967-979
-
-
Momani, S.1
-
21
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny, I., 2002. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Applied Anal., 5 (4): 367-386.
-
(2002)
Fract. Calculus Applied Anal
, vol.5
, Issue.4
, pp. 367-386
-
-
Podlubny, I.1
-
22
-
-
0002588102
-
Nonlinear dynamical systems: On the accuracy of Adomian's decomposition method
-
Répaci, A., 1990. Nonlinear dynamical systems: On the accuracy of Adomian's decomposition method. Applied Math. Lett., 3 (3): 35-39.
-
(1990)
Applied Math. Lett
, vol.3
, Issue.3
, pp. 35-39
-
-
Répaci, A.1
-
23
-
-
0002811385
-
Analytical approximations and Padé approximants for Volterra's population model
-
Wazwaz, A.M., 1999. Analytical approximations and Padé approximants for Volterra's population model. Applied Math. Comput, 100 (3): 13-25.
-
(1999)
Applied Math. Comput
, vol.100
, Issue.3
, pp. 13-25
-
-
Wazwaz, A.M.1
|