메뉴 건너뛰기




Volumn 81, Issue 5, 2008, Pages 714-724

An adaptive orthogonal search algorithm for model subset selection and non-linear system identification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; IDENTIFICATION (CONTROL SYSTEMS); MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 41849127835     PISSN: 00207179     EISSN: 13665820     Source Type: Journal    
DOI: 10.1080/00207170701216311     Document Type: Article
Times cited : (88)

References (31)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • D.M. Allen, "The relationship between variable selection and data augmentation and a method for prediction", Technometrics, 16, pp. 125-127, 1974.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 2
    • 0343347137 scopus 로고
    • Discussion: Multivariate adaptive regression splines
    • A. R. Barron and X.Y. Xiao, "Discussion: multivariate adaptive regression splines", Ann. Stat., 19, pp. 67-82, 1991.
    • (1991) Ann. Stat , vol.19 , pp. 67-82
    • Barron, A.R.1    Xiao, X.Y.2
  • 3
    • 41849108631 scopus 로고    scopus 로고
    • S.A. Billings and S. Chen, The determination of multivariable nonlinear models for dynamic systems using neural networks, in Neural Network Systems Techniques and Applications, C.T. Leondes, Ed., San Diego: Academic Press, 1998, pp. 231-278.
    • S.A. Billings and S. Chen, The determination of multivariable nonlinear models for dynamic systems using neural networks", in Neural Network Systems Techniques and Applications, C.T. Leondes, Ed., San Diego: Academic Press, 1998, pp. 231-278.
  • 4
    • 0346766321 scopus 로고
    • Orthogonal least-squares parameter-estimation algorithms for nonlinear stochastic-systems
    • S.A. Billings and G.N. Jones, "Orthogonal least-squares parameter-estimation algorithms for nonlinear stochastic-systems", Int. J. Syst. Sci., 23, pp. 1019-1032, 1992.
    • (1992) Int. J. Syst. Sci , vol.23 , pp. 1019-1032
    • Billings, S.A.1    Jones, G.N.2
  • 5
    • 0022752513 scopus 로고
    • Correlation based model validity tests for nonlinear models
    • S.A. Billings and W.S.F. Voon, "Correlation based model validity tests for nonlinear models", Int. J. Com., 44, pp. 235-244, 1986.
    • (1986) Int. J. Com , vol.44 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2
  • 6
    • 23044434528 scopus 로고    scopus 로고
    • A new class of wavelet networks for nonlinear system identification
    • S.A. Billings and H.L. Wei, "A new class of wavelet networks for nonlinear system identification", IEEE Trans. Neural Networks, 16, pp. 862-874, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 862-874
    • Billings, S.A.1    Wei, H.L.2
  • 7
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems suing a forward regression orthogonal estimator
    • S.A. Billings, S. Chen and M.J. Korenberg, "Identification of MIMO non-linear systems suing a forward regression orthogonal estimator", Int. J. Com., 49, pp. 2157-2189, 1989.
    • (1989) Int. J. Com , vol.49 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 9
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S.A. Billings and W. Luo, "Orthogonal least squares methods and their application to non-linear system identification", Int. J. Cont., 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Cont , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 10
    • 0026116468 scopus 로고
    • Orthogonal least-squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan and P.M. Grant, "Orthogonal least-squares learning algorithm for radial basis function networks", IEEE Trans. Neural Networks, 2, pp. 302-309, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 11
    • 3442881906 scopus 로고    scopus 로고
    • Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
    • S. Chen, X. Hong and C.J. Harris, "Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization", IEEE Trans. Syst. Man, Cyber. B, 34, pp. 1708-1717, 2004b.
    • (2004) IEEE Trans. Syst. Man, Cyber. B , vol.34 , pp. 1708-1717
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 12
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal regression with PRESS statistic and regularization
    • S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, "Sparse modeling using orthogonal regression with PRESS statistic and regularization", IEEE Trans. Syst. Man, Cyber. B, 34, pp. 898-911, 2004a.
    • (2004) IEEE Trans. Syst. Man, Cyber. B , vol.34 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 13
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions - estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba, "Smoothing noisy data with spline functions - estimating the correct degree of smoothing by the method of generalized cross-validation", Numer. Math., 31, pp. 377-403, 1979.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman, "Multivariate adaptive regression splines", Ann. Stat., 19, pp. 1-67, 1991.
    • (1991) Ann. Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 15
    • 0024607448 scopus 로고
    • Flexible parsimonious smoothing and additive modeling
    • J.H. Friedman and B.W. Silverman, "Flexible parsimonious smoothing and additive modeling", Technometrics, 31, pp. 3-21, 1989.
    • (1989) Technometrics , vol.31 , pp. 3-21
    • Friedman, J.H.1    Silverman, B.W.2
  • 16
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G.H. Golub, M. Heath and G. Wahha, "Generalized cross-validation as a method for choosing a good ridge parameter", Technometrics, 21, pp. 215-223, 1979.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahha, G.3
  • 17
    • 0037089240 scopus 로고    scopus 로고
    • A note on variable selection in nonparametric regression with dependent data
    • W. Gonzalez-Manteiga, A. Quintela-del-Ro and P. Vieu, "A note on variable selection in nonparametric regression with dependent data", Stat. Prob. Lett., 57, pp. 259-268, 2002.
    • (2002) Stat. Prob. Lett , vol.57 , pp. 259-268
    • Gonzalez-Manteiga, W.1    Quintela-del-Ro, A.2    Vieu, P.3
  • 18
    • 0037361405 scopus 로고    scopus 로고
    • A robust nonlinear identification algorithm using PRESS statistic and forward regression
    • X. Hong, P.M. Sharkey and K. Warwick, "A robust nonlinear identification algorithm using PRESS statistic and forward regression", IEEE Trans. Neural Networks, 14, pp. 454-458, 2003.
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 454-458
    • Hong, X.1    Sharkey, P.M.2    Warwick, K.3
  • 19
    • 4344645684 scopus 로고    scopus 로고
    • Sparse model identification using orthogonal, forward regression with basis pursuit and D-optimality
    • X. Hong, M. Brown, S. Chen and C.J. Harris, "Sparse model identification using orthogonal, forward regression with basis pursuit and D-optimality", IEE Proc. Contr. Theory. Appl., 151, pp. 491-498, 2004.
    • (2004) IEE Proc. Contr. Theory. Appl , vol.151 , pp. 491-498
    • Hong, X.1    Brown, M.2    Chen, S.3    Harris, C.J.4
  • 20
    • 2442610634 scopus 로고    scopus 로고
    • Identification of non-linear additive autoregressive models
    • J.H.Z. Huang and L.J. Yang, "Identification of non-linear additive autoregressive models", J. Royal Statistical Soe. Ser. B, Part 2, 66, pp. 463-477, 2004.
    • (2004) J. Royal Statistical Soe. Ser. B, Part 2 , vol.66 , pp. 463-477
    • Huang, J.H.Z.1    Yang, L.J.2
  • 26
    • 0000629975 scopus 로고
    • Cross-validity choice and assessment of statistical predictor
    • M. Stone, "Cross-validity choice and assessment of statistical predictor", J. Roy. Statist. Soc, 36, pp. 111-147, 1974.
    • (1974) J. Roy. Statist. Soc , vol.36 , pp. 111-147
    • Stone, M.1
  • 27
    • 84950945751 scopus 로고
    • Nonparametric identification of nonlinear time series: Selecting significant lags
    • D. Tjostheim and B.H. Auestad, "Nonparametric identification of nonlinear time series: selecting significant lags", J. Amer. Statis. Assoc., 89, pp. 1410-1419, 1994.
    • (1994) J. Amer. Statis. Assoc , vol.89 , pp. 1410-1419
    • Tjostheim, D.1    Auestad, B.H.2
  • 28
    • 0000069295 scopus 로고    scopus 로고
    • Nonparametric lags selection for time series
    • R. Tschernig and L.J. Yang, "Nonparametric lags selection for time series", J. Time Series Anal., 21, pp. 457-487, 2000.
    • (2000) J. Time Series Anal , vol.21 , pp. 457-487
    • Tschernig, R.1    Yang, L.J.2
  • 29
    • 84963436542 scopus 로고
    • Order choice in nonlinear autoregressive models
    • P. Vieu, "Order choice in nonlinear autoregressive models", Statistics, 26, pp. 307-328, 1995.
    • (1995) Statistics , vol.26 , pp. 307-328
    • Vieu, P.1
  • 30
    • 0742304416 scopus 로고    scopus 로고
    • Term and variable selection for nonlinear system identification
    • H.L. Wei, S.A. Billings and J. Liu, "Term and variable selection for nonlinear system identification", Int. J. Cont., 77, pp. 86-110, 2004.
    • (2004) Int. J. Cont , vol.77 , pp. 86-110
    • Wei, H.L.1    Billings, S.A.2    Liu, J.3
  • 31
    • 0030192825 scopus 로고    scopus 로고
    • Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    • Q.M. Zhu and S.A. Billings, "Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks", Int. J. Cont., 64, pp. 871-886, 1996.
    • (1996) Int. J. Cont , vol.64 , pp. 871-886
    • Zhu, Q.M.1    Billings, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.