메뉴 건너뛰기




Volumn 3, Issue 2, 2008, Pages 214-217

Closed-form solutions to fractional-order linear differential equations

Author keywords

Calculus; Differential equations; Fractional order differentiator; Integer order approximations; Linear systems; Numerical solutions; Simulation

Indexed keywords


EID: 41749092529     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-008-0025-3     Document Type: Article
Times cited : (17)

References (12)
  • 2
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus & Applied Analysis, 2002, 5: 367-386
    • (2002) Fractional Calculus & Applied Analysis , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 9
    • 0001611264 scopus 로고    scopus 로고
    • Some approximations of fractional order operators used in control theory and applications
    • Vinagre B M, Podlubny I, Hernández A, et al. Some approximations of fractional order operators used in control theory and applications. Fractional Calculus & Applied Analysis, 2000, 3: 231-248
    • (2000) Fractional Calculus & Applied Analysis , vol.3 , pp. 231-248
    • Vinagre, B.M.1    Podlubny, I.2    Hernández, A.3
  • 11
    • 0141961689 scopus 로고    scopus 로고
    • A new IIR-type digital fractional order differentiator
    • 11
    • Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator. Signal Processing, 2003, 83(11): 2359-2365
    • (2003) Signal Processing , vol.83 , pp. 2359-2365
    • Chen, Y.Q.1    Vinagre, B.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.