-
1
-
-
0026883172
-
Digital filters as absolute norm regularizers
-
[1]
-
[1] S. Alliney, Digital filters as absolute norm regularizers, IEEE Transactions on Signal Processing,40, 6, 1548-1562, 1992.
-
(1992)
IEEE Transactions on Signal Processing
, vol.40
, Issue.6
, pp. 1548-1562
-
-
Alliney, S.1
-
3
-
-
27844461945
-
Aspects of total variation regularized L1 function approximation
-
[3]
-
[3] T. F. Chan and S. Esedoglu, Aspects of total variation regularized L1 function approximation,SIAM Journal on Applied Mathematics, 65(5), 1817-1837, 2005.
-
(2005)
SIAM Journal on Applied Mathematics
, vol.65
, Issue.5
, pp. 1817-1837
-
-
Chan, T. F.1
Esedoglu, S.2
-
5
-
-
85128816003
-
-
[5] Univer-sity Lecture Series, American Mathematical Society, Providence, RI
-
[5] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, Univer-sity Lecture Series, American Mathematical Society, Providence, RI, 22, 2001.
-
(2001)
Oscillating patterns in image processing and nonlinear evolution equations
, vol.22
-
-
Meyer, Y.1
-
6
-
-
0038042413
-
Minimizers of cost-functions involving nonsmooth data-fidelity terms, application to the processing of outliers
-
[6]
-
[6] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms, application to the processing of outliers, SIAM J. Numer. Anal., electronic, 40, 965-994, 2002.
-
(2002)
SIAM J. Numer. Anal., electronic
, vol.40
, pp. 965-994
-
-
Nikolova, M.1
-
7
-
-
1242284980
-
A variational approach to remove outliers and impulse noise
-
[7] Special on Mathematics and Image Analysis
-
[7] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20, 99-120, 2004. Special Issue on Mathematics and Image Analysis.
-
(2004)
J. Math. Imaging Vision
, vol.20
, pp. 99-120
-
-
Nikolova, M.1
-
8
-
-
3142712959
-
Weakly constrained minimization: application to the estimation of images and signals involving constant regions
-
[8]
-
[8] M. Nikolova, Weakly constrained minimization: application to the estimation of images and signals involving constant regions, J. Math. Imaging Vision, 21, 155-175, 2004.
-
(2004)
J. Math. Imaging Vision
, vol.21
, pp. 155-175
-
-
Nikolova, M.1
-
9
-
-
33745090300
-
G-norm properties of bounded variation regularization
-
[9]
-
[9] S. Osher and O. Scherzer, G-norm properties of bounded variation regularization, Comm. Math.Sci, 2, 237-254, 2004.
-
(2004)
Comm. Math.Sci
, vol.2
, pp. 237-254
-
-
Osher, S.1
Scherzer, O.2
-
10
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
[10]
-
[10] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, 1992.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L. I.1
Osher, S.2
Fatemi, E.3
|