-
1
-
-
41549147283
-
-
Self-Organization in Nonequilibrium Systems-From Dissipative Structures to Order through Fluctuations (Wiley, New York).
-
G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems-From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).
-
(1977)
-
-
Nicolis, G.1
Prigogine, I.2
-
2
-
-
84981674399
-
-
0035-9009 10.1256/smsqj.42905, ();, Nature (London) 279, 630 (1979).
-
G. W. Paltridge, Q. J. R. Meteorol. Soc. 0035-9009 10.1256/smsqj.42905 101, 475 (1975); G. W. Paltridge, Nature (London) 279, 630 (1979).
-
(1975)
Q. J. R. Meteorol. Soc.
, vol.101
, pp. 475
-
-
Paltridge, G.W.1
Paltridge, G.W.2
-
6
-
-
0034744782
-
-
DOI: 10.1029/2000GL012336.
-
R. D. Lorenz, J. I. Lunine, and P. G. Withers, Geophys. Res. Lett. 28, 415, DOI: 10.1029/2000GL012336 (2001).
-
(2001)
Geophys. Res. Lett.
, vol.28
, pp. 415
-
-
Lorenz, R.D.1
Lunine, J.I.2
Withers, P.G.3
-
9
-
-
35949016252
-
-
0031-9007 10.1103/PhysRevLett.49.1408, (); ASDEX Team, Nucl. Fusion 0029-5515 29, 1959 (1989);, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.63. 2365 63, 2365 (1989);, Phys. Rev. Lett. 64, 3015 (1990).
-
F. Wagner, G. Becker, K. Behringer, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.49.1408 49, 1408 (1982); ASDEX Team, Nucl. Fusion 0029-5515 29, 1959 (1989); R. J. Taylor, M. L. Brown, B. D. Fried, H. Grote, J. R. Liberati, G. J. Morales, P. Pribyl, D. Darrow, and M. Ono, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.63.2365 63, 2365 (1989); R. J. Groebner, K. H. Burrell, and R. P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 1408
-
-
Wagner, F.1
Becker, G.2
Behringer, K.3
Taylor, R.J.4
Brown, M.L.5
Fried, B.D.6
Grote, H.7
Liberati, J.R.8
Morales, G.J.9
Pribyl, P.10
Darrow, D.11
Ono, M.12
Groebner, R.J.13
Burrell, K.H.14
Seraydarian, R.P.15
-
10
-
-
0033440745
-
-
Here, the "minimum" means that S i =0 (so that W =0), but not minimizing S D with examining the relation between the distributions of the temperature T, heat flux f, and the diffusion coefficient. For a critical analysis of "minimum entropy production" in a fluid system, see.
-
Here, the "minimum" means that S i =0 (so that W =0), but not minimizing S D with examining the relation between the distributions of the temperature T, heat flux f, and the diffusion coefficient. For a critical analysis of "minimum entropy production" in a fluid system, see E. Barbera, Continuum Mech. Thermodyn. 11, 327 (1999).
-
(1999)
Continuum Mech. Thermodyn.
, vol.11
, pp. 327
-
-
Barbera, E.1
-
13
-
-
0037017999
-
-
Examples of a pair of dual variational principles are: (1) for a fixed perimeter, find a curve that maximizes the area of its enclosed region (isoperimetric problem), (2) for a fixed area, find a curve that minimize the perimeter. Note that the opposite problems are "ill-posed": (1') for a fixed perimeter, find a curve that minimizes the area of its enclosed region, (2') for a fixed area, find a curve that maximized the perimeter. To formulate a well-posed variational principle, the target functional to be maximized (minimized) must be "higher-order" ("lower-order") in comparison to the functional representing the constraint. In a variational principle of field theory, "higher-order" means that the functional includes higher-order derivatives. The enstrophy is higher-order with respect to the energy; see.
-
Examples of a pair of dual variational principles are: (1) for a fixed perimeter, find a curve that maximizes the area of its enclosed region (isoperimetric problem), (2) for a fixed area, find a curve that minimize the perimeter. Note that the opposite problems are "ill-posed": (1') for a fixed perimeter, find a curve that minimizes the area of its enclosed region, (2') for a fixed area, find a curve that maximized the perimeter. To formulate a well-posed variational principle, the target functional to be maximized (minimized) must be "higher-order" ("lower-order") in comparison to the functional representing the constraint. In a variational principle of field theory, "higher-order" means that the functional includes higher-order derivatives. The enstrophy is higher-order with respect to the energy; see Z. Yoshida and S. M. Mahajan, Phys. Rev. Lett. 88, 095001 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 095001
-
-
Yoshida, Z.1
Mahajan, S.M.2
|