메뉴 건너뛰기




Volumn 133, Issue 1, 2008, Pages 169-179

Curvature integrals under the Ricci flow on surfaces

Author keywords

Asymptotic volume ratio; Ricci flow; Total absolute curvature; Total curvature

Indexed keywords


EID: 41549158569     PISSN: 00465755     EISSN: 15729168     Source Type: Journal    
DOI: 10.1007/s10711-008-9241-5     Document Type: Article
Times cited : (10)

References (14)
  • 1
    • 84972506625 scopus 로고
    • The Ricci flow on the 2-sphere
    • 2
    • Chow B. (1991). The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2): 325-334
    • (1991) J. Differ. Geom. , vol.33 , pp. 325-334
    • Chow, B.1
  • 2
    • 0031182532 scopus 로고    scopus 로고
    • On the structure of spaces with Ricci curvature bounded below
    • 3
    • Cheeger J. and Colding T. (1997). On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3): 406-480
    • (1997) I. J. Differ. Geom. , vol.46 , pp. 406-480
    • Cheeger, J.1    Colding, T.2
  • 4
    • 33947629624 scopus 로고    scopus 로고
    • Type II ancient solutions to the Ricci flow on surfaces
    • 1
    • Chu S.C. (2007). Type II ancient solutions to the Ricci flow on surfaces. Commun. Anal. Geom. 15(1): 195-215
    • (2007) Commun. Anal. Geom. , vol.15 , pp. 195-215
    • Chu, S.C.1
  • 5
    • 34547375107 scopus 로고    scopus 로고
    • Mass under the Ricci flow
    • 1
    • Dai X. and Ma L. (2007). Mass under the Ricci flow. Commun. Math. Phys. 274(1): 65-80
    • (2007) Commun. Math. Phys. , vol.274 , pp. 65-80
    • Dai, X.1    Ma, L.2
  • 6
    • 0003268230 scopus 로고    scopus 로고
    • Metric structures for Riemannian and non-Riemannian spaces
    • With appendices by Katz, M., Pansu, P., Semmes, S. Birkhuser Boston, Inc., Boston, MA
    • Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. With appendices by Katz, M., Pansu, P., Semmes, S. Progress in Mathematics, 152. Birkhuser Boston, Inc., Boston, MA (1999)
    • (1999) Progress in Mathematics , vol.152
    • Gromov, M.1
  • 7
    • 0000872141 scopus 로고
    • The Ricci flow on Surfaces, Mathematics and General Relativity
    • Santa Cruz, CA AMS, Providence, RI
    • Hamilton, R.: The Ricci flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), pp. 237-262. Contemp. Math., 71, AMS, Providence, RI (1988)
    • (1986) Contemp. Math. , vol.71 , pp. 237-262
    • Hamilton, R.1
  • 8
    • 0001825291 scopus 로고
    • The Formation of Singularities in the Ricci flow
    • (Cambridge, MA Int. Press, Cambridge, MA
    • Hamilton, R.: The Formation of Singularities in the Ricci flow, Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7-136, Int. Press, Cambridge, MA (1995)
    • (1993) Surveys in Differential Geometry , vol.2 , pp. 7-136
    • Hamilton, R.1
  • 9
    • 51649203357 scopus 로고
    • On subharmonic functions and differential geometry in the large, Comment
    • Huber A. (1957). On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32: 13-72
    • (1957) Math. Helv. , vol.32 , pp. 13-72
    • Huber, A.1
  • 11
    • 84972510530 scopus 로고
    • Deforming the metric on complete Riemannian manifolds
    • 1
    • Shi W.X. (1989). Deforming the metric on complete Riemannian manifolds. J. Differential Geom. 30(1): 223-301
    • (1989) J. Differential Geom. , vol.30 , pp. 223-301
    • Shi, W.X.1
  • 12
    • 18444393794 scopus 로고    scopus 로고
    • The geometry of total curvature on complete open surfaces
    • Cambridge University Press, Cambridge
    • Shiohama, K., Shioya, T., Tanaka, M.: The Geometry of Total Curvature on Complete Open Surfaces. Cambridge Tracts in Mathematics, 159. Cambridge University Press, Cambridge (2003)
    • (2003) Cambridge Tracts in Mathematics , vol.159
    • Shiohama, K.1    Shioya, T.2    Tanaka, M.3
  • 14
    • 0002305549 scopus 로고
    • On complete open manifolds of positive curvature
    • 2
    • Gromoll D. and Meyer W. (1969). On complete open manifolds of positive curvature. Ann. Math. 90(2): 75-90
    • (1969) Ann. Math. , vol.90 , pp. 75-90
    • Gromoll, D.1    Meyer, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.