-
1
-
-
0000325938
-
Geometric representation of the swept volume using Jacobian rank-deficiency conditions
-
6
-
Abdel-Malek, K., Yeh, H.J., 1997. Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Computer-Aided Design, 29(6):457-468. [doi:10.1016/S0010-4485(96)00097-8]
-
(1997)
Computer-Aided Design
, vol.29
, pp. 457-468
-
-
Abdel-Malek, K.1
Yeh, H.J.2
-
2
-
-
33745888998
-
Swept volumes: Foundations, perspectives and applications
-
1
-
Abdel-Malek, K., Yang, J., Blackmore, D., Ken, J., 2006. Swept volumes: foundations, perspectives and applications. Int. J. Shape Modeling, 12(1):87-127. [doi:10.1142/S0218654306000858]
-
(2006)
Int. J. Shape Modeling
, vol.12
, pp. 87-127
-
-
Abdel-Malek, K.1
Yang, J.2
Blackmore, D.3
Ken, J.4
-
3
-
-
0032074851
-
Self-intersection of composite curves and surfaces
-
5
-
Andersson, L.E., Peters, T.J., Stewart, N.F., 1998. Self-intersection of composite curves and surfaces. Computer Aided Geometric Design, 15(5):507-527. [doi:10.1016/S0167-8396(98)00005-3]
-
(1998)
Computer Aided Geometric Design
, vol.15
, pp. 507-527
-
-
Andersson, L.E.1
Peters, T.J.2
Stewart, N.F.3
-
4
-
-
0027098590
-
Analysis of swept volume via Lie group and differential equations
-
6
-
Blackmore, D., Leu, M.C., 1992. Analysis of swept volume via Lie group and differential equations. Int. J. Rob. Res., 11(6):516-537. [doi:10.1177/027836499201100602]
-
(1992)
Int. J. Rob. Res.
, vol.11
, pp. 516-537
-
-
Blackmore, D.1
Leu, M.C.2
-
5
-
-
0031237207
-
The sweep-envelop differential equation algorithm and its application to NC machining verification
-
9
-
Blackmore, D., Leu, M.C., Wang, L.P., 1997a. The sweep-envelop differential equation algorithm and its application to NC machining verification. Computer-Aided Design, 29(9):629-637. [doi:10.1016/S0010-4485(96) 00101-7]
-
(1997)
Computer-Aided Design
, vol.29
, pp. 629-637
-
-
Blackmore, D.1
Leu, M.C.2
Wang, L.P.3
-
6
-
-
0000074025
-
Swept volumes: A retrospective and prospective view
-
Blackmore, D., Leu, M.C., Wang, L.P., Jiang, H., 1997b. Swept volumes: a retrospective and prospective view. Neural, Parallel and Scientific Computations, 5:81-102.
-
(1997)
Neural, Parallel and Scientific Computations
, vol.5
, pp. 81-102
-
-
Blackmore, D.1
Leu, M.C.2
Wang, L.P.3
Jiang, H.4
-
7
-
-
0032674466
-
Trimming swept volumes
-
3
-
Blackmore, D., Samulyak, R., Leu, M.C., 1999. Trimming swept volumes. Computer-Aided Design, 31(3):215-223. [doi:10.1016/S0010-4485(99)00017-2]
-
(1999)
Computer-Aided Design
, vol.31
, pp. 215-223
-
-
Blackmore, D.1
Samulyak, R.2
Leu, M.C.3
-
8
-
-
70349157630
-
Surface self-intersection
-
Lyche, T., Schumaker, L.L. (Eds.)
-
Cohen, E., Ho, C.C., 2000. Surface Self-intersection. In: Lyche, T., Schumaker, L.L. (Eds.), Mathematical Methods for Curves and Surfaces, p.183-194.
-
(2000)
Mathematical Methods for Curves and Surfaces
, pp. 183-194
-
-
Cohen, E.1
Ho, C.C.2
-
9
-
-
2942709624
-
Fast swept volume approximation of complex polyhedral models
-
Kim, Y.J., Varadhan, G., Leu, M.C., Dinesh, M., 2004. Fast swept volume approximation of complex polyhedral models. Computer-Aided Design, 36:1013-1027. [doi:10.1016/j.cad.2004.01.004]
-
(2004)
Computer-Aided Design
, vol.36
, pp. 1013-1027
-
-
Kim, Y.J.1
Varadhan, G.2
Leu, M.C.3
Dinesh, M.4
-
10
-
-
0037089723
-
Generalization of the imprint method to general surfaces of revolution for NC machining
-
5
-
Mann, S., Bedi, S., 2002. Generalization of the imprint method to general surfaces of revolution for NC machining. Computer-Aided Design, 34(5):373-378. [doi:10.1016/S0010-4485(01)00103-8]
-
(2002)
Computer-Aided Design
, vol.34
, pp. 373-378
-
-
Mann, S.1
Bedi, S.2
-
11
-
-
0025434643
-
Sweeping of three-dimensional objects
-
4
-
Martin, R.R., Stephenson, P.C., 1990. Sweeping of three-dimensional objects. Computer-Aided Design, 22(4):223-234. [doi:10.1016/0010-4485(90)90051- D]
-
(1990)
Computer-Aided Design
, vol.22
, pp. 223-234
-
-
Martin, R.R.1
Stephenson, P.C.2
-
12
-
-
34548038254
-
Swept volumes
-
Peternell, M., Pottmann, H., Steiner, T., Zhao, H., 2005. Swept volumes. Computer Aided Design and Applications, 2:95-104.
-
(2005)
Computer Aided Design and Applications
, vol.2
, pp. 95-104
-
-
Peternell, M.1
Pottmann, H.2
Steiner, T.3
Zhao, H.4
-
15
-
-
0020098859
-
Solid modeling: A historical summary and contemporary assessment
-
2
-
Requicha, A.A.G., Voelcker, H.B., 1982. Solid modeling: a historical summary and contemporary assessment. IEEE Computer Graph. Appl., 2(2):9-24. [doi:10.1109/MCG.1982.1674149]
-
(1982)
IEEE Computer Graph. Appl.
, vol.2
, pp. 9-24
-
-
Requicha, A.A.G.1
Voelcker, H.B.2
-
16
-
-
34447650250
-
Boundary of the volume swept by a free-form solid in screw motion
-
9
-
Rossignac, J., Kim, J.J., Song, S.C., Suh, K.C., Joung, C.B., 2007. Boundary of the volume swept by a free-form solid in screw motion. Computer-Aided Design, 39(9):745-755. [doi:10.1016/j.cad.2007.02.016]
-
(2007)
Computer-Aided Design
, vol.39
, pp. 745-755
-
-
Rossignac, J.1
Kim, J.J.2
Song, S.C.3
Suh, K.C.4
Joung, C.B.5
-
17
-
-
0022906241
-
Geometric modeling for swept volume of moving solids
-
12
-
Wang, W.P., Wang, K.K., 1986. Geometric modeling for swept volume of moving solids. IEEE Computer Graph. Appl., 6(12):8-17.
-
(1986)
IEEE Computer Graph. Appl.
, vol.6
, pp. 8-17
-
-
Wang, W.P.1
Wang, K.K.2
-
18
-
-
1342346352
-
Swept volume generation for the simulation of machining process
-
6
-
Weinert, K., Du, S.J., Damm, P., Stautner, M., 2004. Swept volume generation for the simulation of machining process. Int. J. Machine Tools Manufacture, 44(6):617-628. [doi:10.1016/j.ijmachtools.2003.12.003]
-
(2004)
Int. J. Machine Tools Manufacture
, vol.44
, pp. 617-628
-
-
Weinert, K.1
Du, S.J.2
Damm, P.3
Stautner, M.4
-
19
-
-
0025508255
-
Geometric representation of swept volume with application to polyhedral objects
-
5
-
Weld, J., Leu, M., 1990. Geometric representation of swept volume with application to polyhedral objects. Int. J. Rob. Res., 9(5):105-117. [doi:10.1177/027836499000900507]
-
(1990)
Int. J. Rob. Res.
, vol.9
, pp. 105-117
-
-
Weld, J.1
Leu, M.2
-
20
-
-
35348892030
-
Approximate the swept volume of revolutions along curved trajectories
-
[doi:10.1145/1236246.1236290]
-
Xu, Z.Q., Chen, Z.Y., Ye, X.Z., Zhang, S.Y., 2007. Approximate the Swept Volume of Revolutions along Curved Trajectories. Proc. ACM Symp. on Solid and Physical Modeling, p.309-314. [doi:10.1145/1236246.1236290]
-
(2007)
Proc. ACM Symp. on Solid and Physical Modeling
, pp. 309-314
-
-
Xu, Z.Q.1
Chen, Z.Y.2
Ye, X.Z.3
Zhang, S.Y.4
-
21
-
-
35348874466
-
Swept volume and its application to mechanical design
-
1
-
Yu, H.B., Wang, Y.X., 2003. Swept volume and its application to mechanical design. J. Eng. Graph., 24(1):63-70 (in Chinese).
-
(2003)
J. Eng. Graph.
, vol.24
, pp. 63-70
-
-
Yu, H.B.1
Wang, Y.X.2
|