메뉴 건너뛰기




Volumn 64, Issue 6, 2008, Pages 624-633

Neural networks for modelling ultimate pure bending of steel circular tubes

Author keywords

Back propagation; Neural networks; Pure bending; Steel circular tubes

Indexed keywords

BACKPROPAGATION; BENDING (FORMING); NEURAL NETWORKS; SENSITIVITY ANALYSIS; SPREADSHEETS; TUBES (COMPONENTS);

EID: 41549111620     PISSN: 0143974X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jcsr.2007.12.001     Document Type: Article
Times cited : (39)

References (33)
  • 2
    • 41549100117 scopus 로고    scopus 로고
    • Sherman DR. Inelastic flexural buckling of cylinders, "steel structures". In: Pavlovic MN, editor. Proceedings of the invited papers for the international conference of recent research advance and their applications to design budva. 1986
    • Sherman DR. Inelastic flexural buckling of cylinders, "steel structures". In: Pavlovic MN, editor. Proceedings of the invited papers for the international conference of recent research advance and their applications to design budva. 1986
  • 3
    • 0001219609 scopus 로고
    • Bending strength of tubing in the plastic range
    • Ades C.S. Bending strength of tubing in the plastic range. Journal of Aerospace Science 24 (1957) 605-610
    • (1957) Journal of Aerospace Science , vol.24 , pp. 605-610
    • Ades, C.S.1
  • 6
    • 0009647887 scopus 로고
    • Failure of thin circular tubes under combined bending and internal or external pressure
    • Kogakusi K.I. Failure of thin circular tubes under combined bending and internal or external pressure. Journal of Japanese Society of Aerospace Engineers 7 (1940) 1109
    • (1940) Journal of Japanese Society of Aerospace Engineers , vol.7 , pp. 1109
    • Kogakusi, K.I.1
  • 7
    • 0001580228 scopus 로고
    • Deformation characteristics of crashworthy thin walled steel tubes subjected to bending Proceedings of Institute of Mechanical Engineers
    • Mamalis A.G., Manolakas D.E., Baldoukas A.K., and Viegelahn G.L. Deformation characteristics of crashworthy thin walled steel tubes subjected to bending Proceedings of Institute of Mechanical Engineers. Journal of Mechanical Science 203 (1989) 411-417
    • (1989) Journal of Mechanical Science , vol.203 , pp. 411-417
    • Mamalis, A.G.1    Manolakas, D.E.2    Baldoukas, A.K.3    Viegelahn, G.L.4
  • 8
    • 33746306540 scopus 로고    scopus 로고
    • Prediction of web crippling strength of cold-formed steel sheeting using neural networks
    • Guzelbey I.H., Cevik A., and Erklig A. Prediction of web crippling strength of cold-formed steel sheeting using neural networks. Journal of Constructional Steel Research 62 10 (2006) 962-973
    • (2006) Journal of Constructional Steel Research , vol.62 , Issue.10 , pp. 962-973
    • Guzelbey, I.H.1    Cevik, A.2    Erklig, A.3
  • 9
    • 33746283143 scopus 로고    scopus 로고
    • Prediction of rotation capacity of wide flange beams using neural networks
    • Guzelbey I.H., Cevik A., and Gogus M.T. Prediction of rotation capacity of wide flange beams using neural networks. Journal of Constructional Steel Research 62 10 (2006) 950-961
    • (2006) Journal of Constructional Steel Research , vol.62 , Issue.10 , pp. 950-961
    • Guzelbey, I.H.1    Cevik, A.2    Gogus, M.T.3
  • 10
    • 33646361038 scopus 로고    scopus 로고
    • Neural network constitutive model for rate-dependent materials
    • Jung S., and Ghaboussi J. Neural network constitutive model for rate-dependent materials. Computers and Structures 84 15-16 (2006) 955-963
    • (2006) Computers and Structures , vol.84 , Issue.15-16 , pp. 955-963
    • Jung, S.1    Ghaboussi, J.2
  • 11
    • 20444450868 scopus 로고    scopus 로고
    • Prediction of tensile capacity of single adhesive anchors using neural networks
    • Sakla S.S., and Ashour A.F. Prediction of tensile capacity of single adhesive anchors using neural networks. Computers and Structures 83 21-22 (2005) 1792-1803
    • (2005) Computers and Structures , vol.83 , Issue.21-22 , pp. 1792-1803
    • Sakla, S.S.1    Ashour, A.F.2
  • 12
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press, Cambridge
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representation by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel distributed processing (1986), MIT Press, Cambridge
    • (1986) Parallel distributed processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
    • 0242644816 scopus 로고    scopus 로고
    • Neusciences Corp., Southampton (Hampshire)
    • Neusciences. Neuframe Version 4.0 (2000), Neusciences Corp., Southampton (Hampshire)
    • (2000) Neuframe Version 4.0
    • Neusciences1
  • 18
    • 85057572561 scopus 로고    scopus 로고
    • Jirsa JO, HFook-Hoy L, Wilhoit JC, Merwin JE. Ovaling of pipelines under pure bending. In: Proceedings of the offshore technology conference. 1972
    • Jirsa JO, HFook-Hoy L, Wilhoit JC, Merwin JE. Ovaling of pipelines under pure bending. In: Proceedings of the offshore technology conference. 1972
  • 19
    • 0015331781 scopus 로고
    • Plastic behaviour of hollow structural sections
    • Korol R.M., and Huboda J. Plastic behaviour of hollow structural sections. Journal of Structural Division ASCE 98 ST9 (1972) 1007-1023
    • (1972) Journal of Structural Division ASCE , vol.98 , Issue.ST9 , pp. 1007-1023
    • Korol, R.M.1    Huboda, J.2
  • 21
    • 0037179434 scopus 로고    scopus 로고
    • Bending tests to determine slenderness limits for cold-formed circular hollow sections
    • Elchalakani M., Zhao X.L., and Grzebieta R.H. Bending tests to determine slenderness limits for cold-formed circular hollow sections. Journal of Constructional Steel Research 58 11 (2002) 1407-1430
    • (2002) Journal of Constructional Steel Research , vol.58 , Issue.11 , pp. 1407-1430
    • Elchalakani, M.1    Zhao, X.L.2    Grzebieta, R.H.3
  • 22
    • 13944275878 scopus 로고    scopus 로고
    • Cyclic bending tests to determine fully ductile slenderness limits for cold-formed circular hollow sections
    • Elchalakani M., Zhao X.L., and Grzebieta R.H. Cyclic bending tests to determine fully ductile slenderness limits for cold-formed circular hollow sections. Journal of Structural Engineering ASCE 127 7 (2004) 1001-1010
    • (2004) Journal of Structural Engineering ASCE , vol.127 , Issue.7 , pp. 1001-1010
    • Elchalakani, M.1    Zhao, X.L.2    Grzebieta, R.H.3
  • 23
    • 33646450264 scopus 로고    scopus 로고
    • Variable amplitude cyclic bending tests to determine fully ductile slenderness limits for cold-formed circular hollow sections
    • Elchalakani M., Zhao X.L., and Grzebieta R.H. Variable amplitude cyclic bending tests to determine fully ductile slenderness limits for cold-formed circular hollow sections. Engineering Structures 28 9 (2006) 1223-1235
    • (2006) Engineering Structures , vol.28 , Issue.9 , pp. 1223-1235
    • Elchalakani, M.1    Zhao, X.L.2    Grzebieta, R.H.3
  • 25
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M.A., Maier H.R., and Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering ASCE 18 2 (2004) 105-114
    • (2004) Journal of Computing in Civil Engineering ASCE , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 26
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks
    • Tokar S.A., and Johnson P.A. Rainfall-runoff modelling using artificial neural networks. Journal of Hydrologic Engineering 4 3 (1999) 232-239
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 27
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 28
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 3 (1989) 303-314
    • (1989) Mathematics of Control, Signals, and Systems , vol.3 , pp. 303-314
    • Cybenko, G.1
  • 29
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill M. Neural networks primer, Part III. AI Expert 3 6 (1988) 53-59
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 30
    • 41549115916 scopus 로고    scopus 로고
    • Eurocode 3. Design of steel structures, Part 1.1, general rules and rules for buildings: ENV 1993 1-1, 1992
    • Eurocode 3. Design of steel structures, Part 1.1, general rules and rules for buildings: ENV 1993 1-1, 1992
  • 31
    • 41549133094 scopus 로고    scopus 로고
    • Standards Association of Australia. Cold-formed steel structures. Sydney (Australia): Australian/New Zealand Standard AS/NZS 4600, 1996
    • Standards Association of Australia. Cold-formed steel structures. Sydney (Australia): Australian/New Zealand Standard AS/NZS 4600, 1996
  • 32
    • 41549144840 scopus 로고    scopus 로고
    • Standards Association of Australia. SAA steel structures code. Sydney (Australia): AS4100, 1998
    • Standards Association of Australia. SAA steel structures code. Sydney (Australia): AS4100, 1998


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.