메뉴 건너뛰기




Volumn 92, Issue , 2008, Pages 19-41

The automated design of artificial neural networks using evolutionary computation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 41449103770     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-76286-7_2     Document Type: Article
Times cited : (11)

References (52)
  • 4
    • 41449099910 scopus 로고    scopus 로고
    • Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: Using the genetic algorithm with connectionist learning. CSE Technical Report #CS90-174, Computer Science and Engineering Department, UCSD
    • Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: Using the genetic algorithm with connectionist learning. CSE Technical Report #CS90-174, Computer Science and Engineering Department, UCSD
  • 6
    • 0026453958 scopus 로고
    • Training a 3-node neural network is np-complete
    • Blum AL, Rivest RL (1992) Training a 3-node neural network is np-complete. Neural Networks 5(1):117-127
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 10
    • 0001793307 scopus 로고
    • The evolution of learning: An experiment in genetic connectionism
    • Touretsky DS, Elman JL, Sejnowski TJ, Hinton GE eds, Connectionist Summer School, Morgan Kaufmann, pp, URL
    • Chalmers DJ (1990) The evolution of learning: An experiment in genetic connectionism. In: Touretsky DS, Elman JL, Sejnowski TJ, Hinton GE (eds.) Proceedings of the 1990 Connectionist Summer School, Morgan Kaufmann, pp. 81-90, URL citeseer.ist.psu.edu/chalmers90evolution.html
    • (1990) Proceedings of the , pp. 81-90
    • Chalmers, D.J.1
  • 11
    • 21044442867 scopus 로고    scopus 로고
    • Observing the evolution of neural networks learning to play the game of othello
    • Chong SY, Tan MK, White JD (2005) Observing the evolution of neural networks learning to play the game of othello. IEEE Transactions on Evolutionary Computation 9(3):240-251
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 240-251
    • Chong, S.Y.1    Tan, M.K.2    White, J.D.3
  • 12
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 2(4):303-314
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 0026267820 scopus 로고
    • GenNETS: Genetically programmed neural nets using the genetic algorithm to train neural nets whose inputs and/or output vary in time
    • 91, IEEE, Singapore, 2, pp
    • De Garis H (1991) GenNETS: Genetically programmed neural nets using the genetic algorithm to train neural nets whose inputs and/or output vary in time. In: Proceedings of the International Joint Conference on Neural Networks (5th IJCNN '91), IEEE, Singapore, vol. 2, pp. 1391-1396
    • (1991) Proceedings of the International Joint Conference on Neural Networks (5th IJCNN , pp. 1391-1396
    • De Garis, H.1
  • 14
    • 0026396298 scopus 로고
    • An exploration of genetic algorithms for the selection of connection weights in dynamical neural networks
    • 91, IEEE, New York, NY, Dayton, OH, 3, pp
    • Dill FA, Deer BC (1991) An exploration of genetic algorithms for the selection of connection weights in dynamical neural networks. In: Proceedings of the IEEE 1991 National Aerospace and Electronics Conference (NAECON '91), IEEE, New York, NY, Dayton, OH, vol. 3, pp. 1111-1115
    • (1991) Proceedings of the IEEE 1991 National Aerospace and Electronics Conference (NAECON , pp. 1111-1115
    • Dill, F.A.1    Deer, B.C.2
  • 16
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JE (1990) Finding structure in time. Cognitive Science 14(2):179-211
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.E.1
  • 18
    • 0000651312 scopus 로고
    • Extracting and learning an unknown, grammar with recurrent neural networks
    • Moody JE, Hanson SJ, Lippmann RP eds, Morgan Kaufmann, Denver, CO, pp
    • Giles CL, Miller CB, Chen D, Sun GZ, Chen HH, Lee YC (1992) Extracting and learning an unknown, grammar with recurrent neural networks. In: Moody JE, Hanson SJ, Lippmann RP (eds.) Advances in Neural Information Processing Systems 4, Morgan Kaufmann, Denver, CO, pp. 317-324
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 317-324
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Sun, G.Z.4    Chen, H.H.5    Lee, Y.C.6
  • 19
    • 84977058391 scopus 로고
    • Automatic definition of modular neural networks
    • Gruau F (1995) Automatic definition of modular neural networks. Adaptive Behavior 3:151-183
    • (1995) Adaptive Behavior , vol.3 , pp. 151-183
    • Gruau, F.1
  • 21
    • 18144408766 scopus 로고    scopus 로고
    • Evolving processing speed asymmetries and hemispheric interactions in a neural network model
    • Grushin A, Reggia JA (2005) Evolving processing speed asymmetries and hemispheric interactions in a neural network model. Neurocomputing 65:47-53
    • (2005) Neurocomputing , vol.65 , pp. 47-53
    • Grushin, A.1    Reggia, J.A.2
  • 25
    • 35048871017 scopus 로고    scopus 로고
    • Jung JY, Reggia JA (2004) A descriptive encoding language for evolving modular neural networks. In: Genetic and Evolutionary Computation - GECCO-2004, Part II, Springer, Lecture Notes in Computer Science, 3103, pp. 519-530
    • Jung JY, Reggia JA (2004) A descriptive encoding language for evolving modular neural networks. In: Genetic and Evolutionary Computation - GECCO-2004, Part II, Springer, Lecture Notes in Computer Science, vol. 3103, pp. 519-530
  • 26
    • 33947361151 scopus 로고    scopus 로고
    • Evolutionary design of neural network architectures using a descriptive encoding language
    • Jung JY, Reggia JA (2006) Evolutionary design of neural network architectures using a descriptive encoding language. IEEE Transactions on Evolutionary Computation 10:676-688
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , pp. 676-688
    • Jung, J.Y.1    Reggia, J.A.2
  • 28
    • 0040474146 scopus 로고    scopus 로고
    • Evolution of the human brain: A neuroanatomical perspective
    • Gazzaniga M ed, MIT, pp
    • Killackey H (1996) Evolution of the human brain: A neuroanatomical perspective. In: Gazzaniga M (ed.) The Cognitive Neurosciences, MIT, pp. 1243-1253
    • (1996) The Cognitive Neurosciences , pp. 1243-1253
    • Killackey, H.1
  • 29
    • 0001008973 scopus 로고
    • Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithms
    • Kitano H (1994) Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithms. Physica D 75:225-238
    • (1994) Physica D , vol.75 , pp. 225-238
    • Kitano, H.1
  • 31
    • 32444441119 scopus 로고    scopus 로고
    • Lehmann KA, Kaufmann M (2005) Evolutionary algorithms for the self-organized evolution of networks. In: GECCO '05: Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp. 563-570, DOI http://doi.acm.org/10.1145/1068009.1068105
    • Lehmann KA, Kaufmann M (2005) Evolutionary algorithms for the self-organized evolution of networks. In: GECCO '05: Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp. 563-570, DOI http://doi.acm.org/10.1145/1068009.1068105
  • 36
  • 38
    • 0007849243 scopus 로고    scopus 로고
    • Genetic programming can discover fast and general learning rules for neural networks
    • Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R eds, Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, pp
    • Radi A, Poli R (1998) Genetic programming can discover fast and general learning rules for neural networks. In: Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE, Iba H, Riolo R (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA, pp. 314-323
    • (1998) Genetic Programming 1998: Proceedings of the Third Annual Conference , pp. 314-323
    • Radi, A.1    Poli, R.2
  • 40
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons: From backpropagation to adaptative learning algorithms
    • Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons: From backpropagation to adaptative learning algorithms. Computer Standards & Interfaces 16(3):265-278
    • (1994) Computer Standards & Interfaces , vol.16 , Issue.3 , pp. 265-278
    • Riedmiller, M.1
  • 42
    • 0036480218 scopus 로고    scopus 로고
    • Evolutionary autonomous agents: A neuroscience perspective
    • Ruppin E (2002) Evolutionary autonomous agents: A neuroscience perspective. Nature Reviews Neuroscience 3(2):132-141
    • (2002) Nature Reviews Neuroscience , vol.3 , Issue.2 , pp. 132-141
    • Ruppin, E.1
  • 43
    • 0029326731 scopus 로고
    • Evolving neural control systems
    • Saravanan N, Fogel D (1995) Evolving neural control systems. IEEE Expert 10:23-27
    • (1995) IEEE Expert , vol.10 , pp. 23-27
    • Saravanan, N.1    Fogel, D.2
  • 44
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce english text
    • Sejnowski T, Rosenberg C (1987) Parallel networks that learn to pronounce english text. Complex Systems 1:145-168
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.1    Rosenberg, C.2
  • 45
    • 2442442769 scopus 로고    scopus 로고
    • Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization
    • Shkuro Y, Reggia JA (2003) Cost minimization during simulated evolution of paired neural networks leads to asymmetries and specialization. Cognitive Systems Research 4(4):365-383
    • (2003) Cognitive Systems Research , vol.4 , Issue.4 , pp. 365-383
    • Shkuro, Y.1    Reggia, J.A.2
  • 46
    • 0026264632 scopus 로고
    • Learning neural network weights using genetic algorithms- improving performance by search-space reduction
    • IEEE, Singapore
    • Srinivas M, Patnaik LM (1991) Learning neural network weights using genetic algorithms- improving performance by search-space reduction. In: 1991 IEEE International Joint Conference on Neural Networks, IEEE, Singapore, vol. 3, pp. 2331-2336
    • (1991) 1991 IEEE International Joint Conference on Neural Networks , vol.3 , pp. 2331-2336
    • Srinivas, M.1    Patnaik, L.M.2
  • 47
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural network through augmenting topologies
    • Stanley KO, Miikkulainen R (2002) Evolving neural network through augmenting topologies. Evolutionary Computation 10(2):99-127
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 48
    • 0002958632 scopus 로고    scopus 로고
    • Toward mapping the evolved functional organization of mind and brain
    • Gazzinga M ed, MIT, pp
    • Tooby J, Cosmides L (2000) Toward mapping the evolved functional organization of mind and brain. In: Gazzinga M (ed.) The New Cognitive Neurosciences, MIT, pp. 1167-1178
    • (2000) The New Cognitive Neurosciences , pp. 1167-1178
    • Tooby, J.1    Cosmides, L.2
  • 51
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proceedings of the IEEE 87(9):1423-1447
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 52
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4):257-271
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.