-
2
-
-
0001064029
-
Numerical modelling of nonlinear effects in laminar flow through a porous medium
-
COULAUD, O., MOREL, P. and CALTAGIRONE, J.P., 1988. Numerical modelling of nonlinear effects in laminar flow through a porous medium. Journal of Fluid Mechanics, 190, 393-407.
-
(1988)
Journal of Fluid Mechanics
, vol.190
, pp. 393-407
-
-
Coulaud, O.1
Morel, P.2
Caltagirone, J.P.3
-
3
-
-
0033506568
-
Numerical well model for non- Darcy flow through isotropic porous media
-
EWING, R.E.; LAZAROV, R.D.; LYONS, S.L.; PAPAVASSILIOU, D.V.; PASCIAK, J. and QIN, G., 1999. Numerical well model for non- Darcy flow through isotropic porous media. Journal Computational Geosciences, 3(3-4), 185-204.
-
(1999)
Journal Computational Geosciences
, vol.3
, Issue.3-4
, pp. 185-204
-
-
Ewing, R.E.1
Lazarov, R.D.2
Lyons, S.L.3
Papavassiliou, D.V.4
Pasciak, J.5
Qin, G.6
-
4
-
-
0030434941
-
One-dimensional finiteelement model for high flow velocities in porous media
-
GREENLY, B.T. and JOY, D.M., 1996. One-dimensional finiteelement model for high flow velocities in porous media. Journal of Geotechnical Engineering, 122(10), 789-796.
-
(1996)
Journal of Geotechnical Engineering
, vol.122
, Issue.10
, pp. 789-796
-
-
Greenly, B.T.1
Joy, D.M.2
-
5
-
-
0023568803
-
High velocity flow in porous media
-
HASSANIZADEH, S.M. and GRAY, W.G., 1987. High velocity flow in porous media. Transport in Porous Media, 2(6), 521-531.
-
(1987)
Transport in Porous Media
, vol.2
, Issue.6
, pp. 521-531
-
-
Hassanizadeh, S.M.1
Gray, W.G.2
-
6
-
-
0033225996
-
How accurate is Darcy's law for refractories
-
INNOCENTINI, M.D.M.; PARDO, A.R.F.; SALVINI, V.R. and PANDOLFELLI, V.C., 1999. How accurate is Darcy's law for refractories. American Ceramic Society Bulletin, 78(11), 64-68.
-
(1999)
American Ceramic Society Bulletin
, vol.78
, Issue.11
, pp. 64-68
-
-
Innocentini, M.D.M.1
Pardo, A.R.F.2
Salvini, V.R.3
Pandolfelli, V.C.4
-
7
-
-
0345072574
-
Fully discrete mixed finite element approximations for non-Darcy flows in porous media
-
KIM M.-Y. and PARK E.-J., 1999. Fully discrete mixed finite element approximations for non-Darcy flows in porous media. Computers and Mathematics with Applications, 38(11), 113-129.
-
(1999)
Computers and Mathematics with Applications
, vol.38
, Issue.11
, pp. 113-129
-
-
Kim, M.-Y.1
Park, E.-J.2
-
8
-
-
0000615571
-
An approximate solution technique not depending on small parameters: A special example
-
LIAO, S.J., 1995. An approximate solution technique not depending on small parameters: a special example. International Journal of Non-Linear Mechanics, 30(3), 371-380.
-
(1995)
International Journal of Non-Linear Mechanics
, vol.30
, Issue.3
, pp. 371-380
-
-
Liao, S.J.1
-
10
-
-
0018504095
-
Flow through porous media - The Ergun equation revisited
-
MACDONALD, I.F.; EL-SAYED, M.S.; MOW, K. and DULLIEN, F.A.L., 1979. Flow through porous media - the Ergun equation revisited. Industrial and Engineering Chemistry Fundamentals, 18(3), 199-208.
-
(1979)
Industrial and Engineering Chemistry Fundamentals
, vol.18
, Issue.3
, pp. 199-208
-
-
MacDonald, I.F.1
El-Sayed, M.S.2
Mow, K.3
Dullien, F.A.L.4
-
11
-
-
20344396145
-
Approximate analytical solutions of the Forchheimer equation
-
MOUTSOPOULOS, K.N. and TSIHRINTZIS, V.A., 2005. Approximate analytical solutions of the Forchheimer equation. Journal of Hydrology, 309, 93-103.
-
(2005)
Journal of Hydrology
, vol.309
, pp. 93-103
-
-
Moutsopoulos, K.N.1
Tsihrintzis, V.A.2
-
12
-
-
0034577896
-
Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium
-
NIELD, D.A., 2000. Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium. Transport in Porous Media, 41(3), 349-357.
-
(2000)
Transport in Porous Media
, vol.41
, Issue.3
, pp. 349-357
-
-
Nield, D.A.1
-
13
-
-
14744293611
-
Mixed finite element methods for generalized Forchheimer flow in porous media
-
PARK, E.J., 2005. Mixed finite element methods for generalized Forchheimer flow in porous media. Numerical Methods for Partial Differential Equations, 21(2), 213-228.
-
(2005)
Numerical Methods for Partial Differential Equations
, vol.21
, Issue.2
, pp. 213-228
-
-
Park, E.J.1
-
14
-
-
77956836479
-
A numerical study of the nonlinear laminar regime of flow in an idealised porous medium
-
New York: Elsevier Publishing Company
-
STARK, K.P., 1972. A numerical study of the nonlinear laminar regime of flow in an idealised porous medium. In: Fundamentals of Transport Phenomena in Porous Media, New York: Elsevier Publishing Company, 86-102.
-
(1972)
Fundamentals of Transport Phenomena in Porous Media
, pp. 86-102
-
-
Stark, K.P.1
-
15
-
-
0032051399
-
Network modelling of non-Darcy flow through porous media
-
THAUVIN, F. and MOHANTY, K.K., 1998. Network modelling of non-Darcy flow through porous media. Transport in Porous Media, 31(1), 19-37.
-
(1998)
Transport in Porous Media
, vol.31
, Issue.1
, pp. 19-37
-
-
Thauvin, F.1
Mohanty, K.K.2
-
16
-
-
2342584172
-
The Forchheimer equation in two-dimensional percolation porous media
-
WANG, X.-H. and LIU, Z.-F., 2004. The Forchheimer equation in two-dimensional percolation porous media. Physica A: Statistical and Theoretical Physics, 337(3-4), 384-388.
-
(2004)
Physica A: Statistical and Theoretical Physics
, vol.337
, Issue.3-4
, pp. 384-388
-
-
Wang, X.-H.1
Liu, Z.-F.2
-
17
-
-
0030267168
-
The Forchheimer equation: A theoretical development
-
WHITAKER, S., 1996. The Forchheimer equation: A theoretical development. Transport in Porous Media, 25(1), 27-61.
-
(1996)
Transport in Porous Media
, vol.25
, Issue.1
, pp. 27-61
-
-
Whitaker, S.1
|