-
2
-
-
33947245578
-
Monotonicity properties of the gamma function
-
Alzer H., and Batir N. Monotonicity properties of the gamma function. Appl. Math. Lett. 20 (2007) 778-781
-
(2007)
Appl. Math. Lett.
, vol.20
, pp. 778-781
-
-
Alzer, H.1
Batir, N.2
-
3
-
-
33751345334
-
inequalities for the gamma and q-gamma functions
-
Alzer H., and Grinshpan A.Z. inequalities for the gamma and q-gamma functions. J. Approx. Theory 144 (2007) 67-83
-
(2007)
J. Approx. Theory
, vol.144
, pp. 67-83
-
-
Alzer, H.1
Grinshpan, A.Z.2
-
4
-
-
33744771978
-
Some classes of completely monotonic functions II
-
Alzer H., and Berg C. Some classes of completely monotonic functions II. The Ramanujan J. 11 2 (2006) 225-248
-
(2006)
The Ramanujan J.
, vol.11
, Issue.2
, pp. 225-248
-
-
Alzer, H.1
Berg, C.2
-
5
-
-
0041914576
-
On Ramanujan's double inequality for the gamma function
-
Alzer H. On Ramanujan's double inequality for the gamma function. Bull. London Math. Soc. 35 5 (2003) 601-607
-
(2003)
Bull. London Math. Soc.
, vol.35
, Issue.5
, pp. 601-607
-
-
Alzer, H.1
-
6
-
-
0042376839
-
On some inequalities for the gamma and psi functions
-
Alzer H. On some inequalities for the gamma and psi functions. Math. Comp. 66 217 (1997) 373-389
-
(1997)
Math. Comp.
, vol.66
, Issue.217
, pp. 373-389
-
-
Alzer, H.1
-
7
-
-
0000128713
-
Inequalities for zero-balanced hypergeometric functions
-
Anderson G.D., Barnard R.W., Richards K.C., Vamanamurthy M.K., and Vuorinen M. Inequalities for zero-balanced hypergeometric functions. Trans. Amer. Math. Soc. 347 (1995) 1713-1723
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 1713-1723
-
-
Anderson, G.D.1
Barnard, R.W.2
Richards, K.C.3
Vamanamurthy, M.K.4
Vuorinen, M.5
-
8
-
-
84939587447
-
-
G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.
-
G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.
-
-
-
-
9
-
-
10344242417
-
An interesting double inequality for Euler's gamma function
-
article 97, 3pp
-
Batir N. An interesting double inequality for Euler's gamma function. J. Inequal. Pure Appl. Math. 5 4 (2004) article 97, 3pp
-
(2004)
J. Inequal. Pure Appl. Math.
, vol.5
, Issue.4
-
-
Batir, N.1
-
10
-
-
27844610266
-
Some new inequalities for gamma and polygamma functions
-
article 103, 9pp
-
Batir N. Some new inequalities for gamma and polygamma functions. J. Inequal. Pure Appl. Math. 6 4 (2005) article 103, 9pp
-
(2005)
J. Inequal. Pure Appl. Math.
, vol.6
, Issue.4
-
-
Batir, N.1
-
11
-
-
84939587448
-
-
C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematic und ihrer Grenzgebiete, vol. 87, Springer, Berlin, 1975.
-
C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematic und ihrer Grenzgebiete, vol. 87, Springer, Berlin, 1975.
-
-
-
-
12
-
-
84939587449
-
-
L. Bondesson, Generalized Gamma Convolution and Related Classes of Distributions and Densities, Lecture Notes in Statistics, vol. 76, Springer, New York, 1992.
-
L. Bondesson, Generalized Gamma Convolution and Related Classes of Distributions and Densities, Lecture Notes in Statistics, vol. 76, Springer, New York, 1992.
-
-
-
-
13
-
-
0014926481
-
On monotonicities of the relaxation functions of viscoelastic material
-
Day W.A. On monotonicities of the relaxation functions of viscoelastic material. Proc. Cambridge Philos. Soc. 67 (1970) 503-508
-
(1970)
Proc. Cambridge Philos. Soc.
, vol.67
, pp. 503-508
-
-
Day, W.A.1
-
15
-
-
84939587450
-
-
L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt, in: C. Bohm, G. Faber (Eds.), Opera Omnia (1) vol. 14, B. G. Teubner, Berlin, 1925, pp. 1-24.
-
L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt, in: C. Bohm, G. Faber (Eds.), Opera Omnia (1) vol. 14, B. G. Teubner, Berlin, 1925, pp. 1-24.
-
-
-
-
16
-
-
33645771401
-
Completely monotonic functions involving the gamma and q-gamma functions
-
Grinshpan A.Z., and Ismail M.E.H. Completely monotonic functions involving the gamma and q-gamma functions. Proc. Amer. Math. Soc. 134 4 (2006) 1153-1160
-
(2006)
Proc. Amer. Math. Soc.
, vol.134
, Issue.4
, pp. 1153-1160
-
-
Grinshpan, A.Z.1
Ismail, M.E.H.2
-
17
-
-
84939587451
-
-
W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1984.
-
W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1984.
-
-
-
-
18
-
-
0001160530
-
Error bounds for asymptotic expansions of the ratio of two gamma functions
-
Frenzen L. Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (1987) 890-896
-
(1987)
SIAM J. Math. Anal.
, vol.18
, pp. 890-896
-
-
Frenzen, L.1
-
19
-
-
0035888038
-
On the asymptotic representation of the Euler gamma function by Ramanujan
-
Karatsuba E.A. On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comp. Appl. Math. 135 2 (2001) 225-240
-
(2001)
J. Comp. Appl. Math.
, vol.135
, Issue.2
, pp. 225-240
-
-
Karatsuba, E.A.1
-
20
-
-
84966228652
-
Some extensions of W. Gautschi's inequalities for the gamma function
-
Kershaw D. Some extensions of W. Gautschi's inequalities for the gamma function. Math. Comp. 41 (1983) 607-611
-
(1983)
Math. Comp.
, vol.41
, pp. 607-611
-
-
Kershaw, D.1
-
21
-
-
0001502378
-
A probabilistic interpretation of completely monotonicity
-
Kimberling C.H. A probabilistic interpretation of completely monotonicity. Aequationes Math. 10 (1974) 152-164
-
(1974)
Aequationes Math.
, vol.10
, pp. 152-164
-
-
Kimberling, C.H.1
-
22
-
-
39049173057
-
-
F. Qi, A new lower bound in the second Kershaw's double inequality, J. Comput. Appl. Math. (2007), doi:10.1016/j.cam.2007.03.016.
-
F. Qi, A new lower bound in the second Kershaw's double inequality, J. Comput. Appl. Math. (2007), doi:10.1016/j.cam.2007.03.016.
-
-
-
-
23
-
-
34047143717
-
A class of completely monotonic functions and the best bounds in the second Kershaw's double inequality
-
Qi F. A class of completely monotonic functions and the best bounds in the second Kershaw's double inequality. J. Comput. Appl. Math. 206 2 (2007) 1007-1014
-
(2007)
J. Comput. Appl. Math.
, vol.206
, Issue.2
, pp. 1007-1014
-
-
Qi, F.1
-
24
-
-
14944340570
-
Some properties of the gamma and psi functions with applications
-
Qui S.L., and Vuorinen M. Some properties of the gamma and psi functions with applications. Math. Comp. 74 250 (2005) 723-742
-
(2005)
Math. Comp.
, vol.74
, Issue.250
, pp. 723-742
-
-
Qui, S.L.1
Vuorinen, M.2
-
25
-
-
34247482488
-
The gamma function: An Eclectic Tour
-
Srinivasan G.K. The gamma function: An Eclectic Tour. Amer. Math. Monthly 114 4 (2007) 297-315
-
(2007)
Amer. Math. Monthly
, vol.114
, Issue.4
, pp. 297-315
-
-
Srinivasan, G.K.1
-
26
-
-
0004201980
-
-
Princeton University Press, Princeton
-
Widder D.W. The Laplace Transform (1946), Princeton University Press, Princeton
-
(1946)
The Laplace Transform
-
-
Widder, D.W.1
|