-
1
-
-
35949025729
-
-
S. Alexander, J. Bernasconi, W.R. Schneider, and R. Orbach, Rev. Mod. Phys. 53, 175 (1981).
-
(1981)
Rev. Mod. Phys.
, vol.53
, pp. 175
-
-
Alexander, S.1
Bernasconi, J.2
Schneider, W.R.3
Orbach, R.4
-
2
-
-
85036198277
-
-
E.W. Montroll and B.J. West, in Fluctuation Phenomena, 2nd ed., edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1987), Chap. 2
-
E.W. Montroll and B.J. West, in Fluctuation Phenomena, 2nd ed., edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1987), Chap. 2.
-
-
-
-
3
-
-
0001504102
-
-
S.A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam, 1985)
-
G.H. Weiss and R.J. Rubin, Adv. Chem. Phys. 52, 363 (1983);S.A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam, 1985);
-
(1983)
Adv. Chem. Phys.
, vol.52
, pp. 363
-
-
Weiss, G.H.1
Rubin, R.J.2
-
6
-
-
0040307478
-
-
B.D. Hughes, Random Walks and Random Environments (Oxford Univesity Press, New York, 1995);, D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, U.K., 2000)
-
J.P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990);B.D. Hughes, Random Walks and Random Environments (Oxford Univesity Press, New York, 1995);D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, U.K., 2000).
-
(1990)
Phys. Rep.
, vol.195
, pp. 127
-
-
Bouchaud, J.P.1
Georges, A.2
-
7
-
-
85036251971
-
-
N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 2nd ed. (North-Holland, Amsterdam, 1992), Chap. XII
-
N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 2nd ed. (North-Holland, Amsterdam, 1992), Chap. XII.
-
-
-
-
11
-
-
0032584429
-
-
L. Edman, S. Wennmalm, F. Tamsen, and R. Rigler, Chin. Phys. Lett. 292, 15 (1998);
-
(1998)
Chin. Phys. Lett.
, vol.292
, pp. 15
-
-
Edman, L.1
Wennmalm, S.2
Tamsen, F.3
Rigler, R.4
-
13
-
-
0032557299
-
-
Chin. Phys. Lett.E. Geva and J.L. Skinner, 288, 225 (1998);
-
(1998)
, vol.288
, pp. 225
-
-
Geva, E.1
Skinner, J.L.2
-
19
-
-
0000959480
-
-
J. Chem. Phys.G. Zumofen and A. Blumen, 76, 3713 (1982).
-
(1982)
, vol.76
, pp. 3713
-
-
Zumofen, G.1
Blumen, A.2
-
21
-
-
18144419799
-
-
J. Chem. Phys.A. Bar-Haim and J. Klafter, 109, 5187 (1998).
-
(1998)
, vol.109
, pp. 5187
-
-
Bar-Haim, A.1
Klafter, J.2
-
23
-
-
0019607391
-
-
B. Movaghar, G.W. Sauer, D. Würtz, and D.L. Huber, Solid State Commun. 39, 1179 (1981);
-
(1981)
Solid State Commun.
, vol.39
, pp. 1179
-
-
Movaghar, B.1
Sauer, G.W.2
Würtz, D.3
Huber, D.L.4
-
33
-
-
25944479654
-
-
Phys. Rev. Lett.P. Le Doussal, 62, 3097 (1989);
-
(1989)
, vol.62
, pp. 3097
-
-
Le Doussal, P.1
-
40
-
-
0011216385
-
-
Phys. Rev. AS.F. Burlatsky, G.S. Oshanin, A.V. Mogutov, and M. Moreau, 45, R6955 (1992);
-
(1992)
, vol.45
-
-
Burlatsky, S.F.1
Oshanin, G.S.2
Mogutov, A.V.3
Moreau, M.4
-
48
-
-
85036217090
-
-
N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Ref. 4), Chap. V, Sec. 9
-
N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Ref. 4), Chap. V, Sec. 9.
-
-
-
-
49
-
-
85036420856
-
-
We are considering only one-step processes. For general processes with large jumps allowed the boundary condition must be extended over all sites (Formula presented) out of D
-
We are considering only one-step processes. For general processes with large jumps allowed the boundary condition must be extended over all sites (Formula presented) out of D.
-
-
-
-
50
-
-
85036425423
-
-
From Eq. (2.8) the general expression for MFPT is given by (Formula presented)
-
From Eq. (2.8) the general expression for MFPT is given by (Formula presented).
-
-
-
-
51
-
-
85036334246
-
-
A related interesting model is the multiplicative one: (Formula presented) and (Formula presented) where (Formula presented). Thus, (Formula presented) and the corresponding evolution equation that results from Eq. (2.6) is (Formula presented). Here, we can also obtain the symmetrical disordered system and the ordered biased chain as limit cases
-
A related interesting model is the multiplicative one: (Formula presented) and (Formula presented) where (Formula presented). Thus, (Formula presented) and the corresponding evolution equation that results from Eq. (2.6) is (Formula presented). Here, we can also obtain the symmetrical disordered system and the ordered biased chain as limit cases.
-
-
-
-
52
-
-
85036287061
-
-
We must note that from Eqs. (2.3) and (2.10), the MRT is defined only if (Formula presented) is an integrable function in the interval (Formula presented). This condition is only fulfilled in the presence of bias
-
We must note that from Eqs. (2.3) and (2.10), the MRT is defined only if (Formula presented) is an integrable function in the interval (Formula presented). This condition is only fulfilled in the presence of bias.
-
-
-
|