-
7
-
-
0000148257
-
-
P. C. Hendry, N. S. Lawson, P. V. E. McClintock, C. D. H. Williams, and R. M. Bowley, Phys. Rev. Lett. 60, 604 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 604
-
-
Hendry, P.C.1
Lawson, N.S.2
McClintock, P.V.E.3
Williams, C.D.H.4
Bowley, R.M.5
-
8
-
-
2942676640
-
-
edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer-Verlag, Berlin)
-
E. Varoquaux, O. Avenel, Y. Mukharsky, and P. Hakonen, in Quantized Vortex Dynamics and Superfluid Turbulence, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer-Verlag, Berlin, 2001), pp. 36-50.
-
(2001)
Quantized Vortex Dynamics and Superfluid Turbulence
, pp. 36-50
-
-
Varoquaux, E.1
Avenel, O.2
Mukharsky, Y.3
Hakonen, P.4
-
15
-
-
12044254057
-
-
M. R. Smith, R. J. Donnelly, N. Goldenfeld, and W. F. Vinen, Phys. Rev. Lett. 71, 2583 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2583
-
-
Smith, M.R.1
Donnelly, R.J.2
Goldenfeld, N.3
Vinen, W.F.4
-
21
-
-
0000258257
-
-
M. Morishita, T. Kuroda, A. Sawada, and T. Satoh, J. Low Temp. Phys. 76, 387 (1989).
-
(1989)
J. Low Temp. Phys.
, vol.76
, pp. 387
-
-
Morishita, M.1
Kuroda, T.2
Sawada, A.3
Satoh, T.4
-
22
-
-
3242667260
-
-
H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett. 92, 244501 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 244501
-
-
Nichol, H.A.1
Skrbek, L.2
Hendry, P.C.3
McClintock, P.V.E.4
-
24
-
-
11844250219
-
-
note
-
-9 exerted a measurable effect on the creation rate.
-
-
-
-
26
-
-
0042473857
-
-
G. G. Nancolas, R. M. Bowley, and P. V. E. McClintock, Philos. Trans. R. Soc. London, Ser. A 313, 537 (1985).
-
(1985)
Philos. Trans. R. Soc. London, Ser. A
, vol.313
, pp. 537
-
-
Nancolas, G.G.1
Bowley, R.M.2
McClintock, P.V.E.3
-
28
-
-
11844297612
-
-
note
-
We have checked the reduction factor by adding extra lengths of coaxial cable of known capacitance.
-
-
-
-
29
-
-
11844252876
-
-
note
-
This statement is valid for the fundamental mode of vibration; clearly, it does not hold if higher modes become excited.
-
-
-
-
30
-
-
11844276269
-
-
note
-
While driving the grid hard in He II, additional oscillation modes can be excited and observed. At modest drive levels, however, their resonant amplitude is more than two orders of magnitude lower than that of the fundamental and they appear as small but clearly observable glitches on both sides of the resonance peak.
-
-
-
-
31
-
-
11844282411
-
-
note
-
In our preliminary report [22] we have overestimated the grid velocity by a factor of 4, due to an error in derivation of Eq. (2).
-
-
-
-
32
-
-
11844277297
-
-
note
-
We cannot exclude that while driving the grid in vacuum at a high amplitude its temperature rises, as the thermal link to the cell is extremely weak. This can cause changes in elastic behavior of the oscillating grid.
-
-
-
-
34
-
-
11844250839
-
-
private communication
-
A. M. Guénault (private communication).
-
-
-
Guénault, A.M.1
-
38
-
-
11844306876
-
-
note
-
By neglecting the radial displacement profile in approximating the grid motion as one dimensional, one underestimates the peak velocity at its geometrical center by a factor ≃ 2.3, as discussed later.
-
-
-
-
39
-
-
0004168443
-
-
Cambridge University Press, Cam- bridge, U.K.
-
H. Lamb, Hydrodynamics (Cambridge University Press, Cam-bridge, U.K., 1932).
-
(1932)
Hydrodynamics
-
-
Lamb, H.1
-
43
-
-
11844286559
-
-
note
-
Note that a similar effect could be accounted for through an increase in the damping constant, assuming it to be imaginary. The resulting shift would have a different frequency dependence, linear in ω rather than quadratic. Unfortunately, within the narrow accessible range of ω, we cannot distinguish between the two dependences.
-
-
-
-
50
-
-
17044448838
-
-
S. N. Fisher, A. J. Hale, A. M. Guénault, and G. R. Pickett, Phys. Rev. Lett. 86, 244 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 244
-
-
Fisher, S.N.1
Hale, A.J.2
Guénault, A.M.3
Pickett, G.R.4
-
51
-
-
11844258492
-
-
note
-
Given the rough surface of the grid, the nucleation centers are probably more or less randomly distributed over its whole area. Simple analysis then shows that the highest probability of reaching a threshold is along a circle of r≈0.4R and thus close to the node circle if the grid were to oscillate in the axisymmetric (0,2) mode.
-
-
-
|