-
9
-
-
37649031294
-
-
T. Prosen, Phys. Rev. E 65, 036208 (2002); T. Prosen and M. Žnidarič, J. Phys. A 34, L681 (2001); 35, 1455 (2002).
-
(2002)
Phys. Rev. E
, vol.65
, pp. 036208
-
-
Prosen, T.1
-
10
-
-
0035976871
-
-
T. Prosen, Phys. Rev. E 65, 036208 (2002); T. Prosen and M. Žnidarič, J. Phys. A 34, L681 (2001); 35, 1455 (2002).
-
(2001)
J. Phys. A
, vol.34
-
-
Prosen, T.1
Žnidarič, M.2
-
11
-
-
37649031294
-
-
T. Prosen, Phys. Rev. E 65, 036208 (2002); T. Prosen and M. Žnidarič, J. Phys. A 34, L681 (2001); 35, 1455 (2002).
-
(2002)
J. Phys. A
, vol.35
, pp. 1455
-
-
-
17
-
-
0346421133
-
-
F.M. Cucchietti, D.A.R. Dalvit, J.P. Paz, and W.H. Zurek, Phys. Rev. Lett. 91, 210403 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 210403
-
-
Cucchietti, F.M.1
Dalvit, D.A.R.2
Paz, J.P.3
Zurek, W.H.4
-
18
-
-
1242307264
-
-
M. Hiller, T. Kottos, D. Cohen, and T. Geisel, Phys. Rev. Lett. 92, 010402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 010402
-
-
Hiller, M.1
Kottos, T.2
Cohen, D.3
Geisel, T.4
-
23
-
-
42749099144
-
-
G. Benenti, G. Casati, S. Montangero, and D.L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 227901
-
-
Benenti, G.1
Casati, G.2
Montangero, S.3
Shepelyansky, D.L.4
-
24
-
-
0038783510
-
-
G. Benenti, G. Casati, S. Montangero, and D.L. Shepelyansky, Phys. Rev. A 67, 052312 (2003).
-
(2003)
Phys. Rev. A
, vol.67
, pp. 052312
-
-
Benenti, G.1
Casati, G.2
Montangero, S.3
Shepelyansky, D.L.4
-
26
-
-
4043178885
-
-
World Scientific, Singapore
-
G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information (World Scientific, Singapore, 2004), Vol. 1.
-
(2004)
Principles of Quantum Computation and Information
, vol.1
-
-
Benenti, G.1
Casati, G.2
Strini, G.3
-
27
-
-
0037037867
-
-
Y.S. Weinstein, S. Lloyd, J. Emerson, and D.G. Cory, Phys. Rev. Lett. 89, 157902 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 157902
-
-
Weinstein, Y.S.1
Lloyd, S.2
Emerson, J.3
Cory, D.G.4
-
28
-
-
0037207336
-
-
J. Emerson, Y.S. Weinstein, S. Lloyd, and D. Cory, Phys. Rev. Lett. 89, 284102 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 284102
-
-
Emerson, J.1
Weinstein, Y.S.2
Lloyd, S.3
Cory, D.4
-
29
-
-
2942611293
-
-
D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier, Phys. Rev. Lett. 92, 177906 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 177906
-
-
Poulin, D.1
Blume-Kohout, R.2
Laflamme, R.3
Ollivier, H.4
-
30
-
-
0000252567
-
-
G. Casati, B.V. Chirikov, I. Guarneri, and D.L. Shepelyansky, Phys. Rev. Lett. 56, 2437 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 2437
-
-
Casati, G.1
Chirikov, B.V.2
Guarneri, I.3
Shepelyansky, D.L.4
-
36
-
-
0242500348
-
-
Nature London
-
F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, and R. Blatt, Nature (London) 422, 408 (2003).
-
(2003)
, vol.422
, pp. 408
-
-
Schmidt-Kaler, F.1
Häffner, H.2
Riebe, M.3
Gulde, S.4
Lancaster, G.P.T.5
Deuschle, T.6
Becher, C.7
Roos, C.F.8
Eschner, J.9
Blatt, R.10
-
42
-
-
0001840092
-
-
Strictly speaking, the coherent state (5) should be modified in order to take into account the periodic boundary conditions along θ and n, as explained in S.-J. Chang and K.-J. Shi, Phys. Rev. A 34, 7 (1986). However, this modification does not significantly affect the results discussed in this paper.
-
(1986)
Phys. Rev. A
, vol.34
, pp. 7
-
-
Chang, S.-J.1
Shi, K.-J.2
-
45
-
-
0037019324
-
-
C. Miquel, J.P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne, Nature (London) 418, 59 (2002).
-
(2002)
Nature (London)
, vol.418
, pp. 59
-
-
Miquel, C.1
Paz, J.P.2
Saraceno, M.3
Knill, E.4
Laflamme, R.5
Negrevergne, C.6
-
47
-
-
12144281313
-
-
note
-
q(x) = τ1 / N. This saturation value is given by the inverse of the size of the Hubert space and reflects the finiteness of the system.
-
-
-
-
48
-
-
12144251068
-
-
note
-
We obtained a further confirmation of this statement by implementing the quantum algorithm without dynamical evolution - i.e., by putting T=0 and k=0 in Eq. (3). In such a situation, we found that the fidelity drops again exponentially and the ratio between the decay rates starting from a random or a Gaussian state is the same as in the quasi-integrable regime.
-
-
-
|